Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. ...
Weiterlesen
Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. ...
WeiterlesenThis book constitutes the refereed proceedings of the Second International Conference on Distributed Artificial Intelligence, ...
Weiterlesen
This book constitutes the thoroughly refereed and peer-reviewed outcome of the Formal Methods and Testing (FORTEST) network ...
Weiterlesen
The European Conference on Machine Learning (ECML) and the European Conference on Principles and Practice of Knowledge Discovery ...
Weiterlesen
Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems ...
Weiterlesen
Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems ...
Weiterlesen
Markov decision processes (MDPs), also called stochastic dynamic programming, were first studied in the 1960s. MDPs can be ...
Weiterlesen
Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, is a volume undertaken by the friends ...
Weiterlesen
“If necessity is the mother of invention, then deregulation is the father, and r- enue management (also known as yield ...
Weiterlesen
(Four areas in one book) This book covers various disciplines in learning and optimization, including perturbation analysis ...
Weiterlesen