
1

AIU

ARAB INTERNATIONAL UNIVERSITY

Faculty of Informatics & Communication Engineering

Junior Project Report

On

“Vision-Based Arabic Sign Language Recognition”

Submitted to

Department of Informatics Engineering

June 2014

2

Vision-Based Arabic Sign Language Recognition

A junior project submitted in partial fulfillment of the requirement for the

Degree of Bachelor in

Informatics Engineering

Submitted by

Abdulrahman Khankan

Mohamad Alsioufi

Project Supervisors

Dr. Raouf Hamdan, PhD

Eng. Waed Khwies, MSc

June, 2014

3

Faculty of Informatics & Communication Engineering

CERTIFICATE OF APPROVAL

 The undersigned certify that they have read and recommended to the

Department of Computer and Electronics Engineering for acceptance, a project

report entitled “Vision-Based Arabic Sign Language Recognition” submitted by

Abdulrahman Khankan and Mohamad Alsioufi in partial fulfillment for the

Bachelor of Engineering in Informatics

Dr. Raouf Hamdan, PhD

i

Acknowledgement

 It gives us immense pleasure to express our deepest sense of gratitude and

sincere thanks to our highly respected and esteemed guide Dr. Raouf Hamdan,

PhD and Eng. Waed Khwies, MSc , for their valuable guidance, encouragement

and help for completing this work. Their useful suggestions for this whole work

and co-operative behavior are sincerely acknowledged.

 We are also grateful to our teachers for their constant support and

guidance.

 At the end we would like to express our sincere thanks to all our friends

and family and others who helped us directly or indirectly during this project

work.

Abdulrahman Khankan

Mohamad Alsioufi

ii

Abstract

In this project, we facilitate human-machine interaction via hand-gestures captured

by a normal webcam. This is accomplished by two subtasks. First, computer vision

techniques are used to detect and track a hand, identifying key features such as the

location of each fingertip and the center of its palm. Additionally, artificial

intelligence is used to efficiently and accurately identify gestures in a predefined

vocabulary. The system implements a Neural Network to both train and classify

gestures. By using both computer vision techniques and artificial intelligence,

enough knowledge is made available to the system to support human-machine

interaction via hand-gestures.

iii

Abbreviations

The following list of abbreviations were used in this report:

ANN: Artificial Neural Network

SVM: Support Vector Machine

HCI: Human Computer Interaction

MLP: Multi-Layer Perceptron

RGB: Red, Green, Blue color space

HSV: Hue, Saturation, Value color space

1

Table of Contents

Acknowledgement .. i

Abstract .. ii

Abbreviations ... iii

Introduction .. 1

Scope .. 1

Literature Review... 2

Image Processing.. 2

Machine Learning .. 2

Neural Networks .. 3

Sign language ... 3

State of the art .. 4

Sign Language Recognition Systems ... 5

Vision-Based Proposed Solutions .. 5

System Design and Implementation .. 7

System Requirements ... 7

Functional requirements ... 7

Non-functional requirements .. 7

System Analysis ... 8

Methodology ... 8

SWOT ANALYSIS .. 9

System Design .. 10

Skin Detection .. 10

Hand Detection ... 13

Recognition ... 15

System Implementation .. 18

2

Tools ... 18

Configurations and specifications .. 20

Testing .. 21

Results .. 22

Problems and limitations .. 22

Conclusion and future work ... 24

Future vision & applications .. 24

References .. 26

Appendices ... 28

Appendix A .. 28

1

Introduction

Wherever communities of deaf people exist, sign languages develop. Signing is

not only used by the deaf it’s also used by people who can hear, but cannot

physically speak.

There are many people who use sign languages as their primary language. In the

United States alone, approximately 450,000 deaf people use ASL (American Sign

Language) as their primary language

In order to facilitate communication between deaf and hearing people, sign

language interpreters are often used. Such activities involve considerable effort on

the part of the interpreter, since sign languages are distinct natural languages with

their own syntax, different from any spoken language.

This report will discuss in detail, a communication system between deaf and

hearing people using a webcam and computer science technologies, the steps that

were taken in building the system, the design of the system and the state of the art

in this field.

Scope

Creating a robust and real-time system that recognize Arabic sign language

alphabet characters as a step towards facilitating communication between deaf and

hearing people using simple affordable hardware such as webcam and computer

science technologies.

2

Literature Review

Image Processing

Digital image processing is the use of computer algorithms to perform image

processing on digital images.

The following techniques were used

1- Skin segmentation using color pixel classification, which includes:

a. Thresholding, which is the simplest method of image segmentation.

b. Mathematical morphology operators to eliminate the noise.

c. Different types of image filtering were used to examine different

results.

2- Hand detection and segmentation

3- 2-D Image projection, which was used as a method to extract a feature

vector

Machine Learning

Machine learning is a branch of artificial intelligence, concerns the construction

and study of systems that can learn from data.

The core of machine learning deals with representation and generalization.

Representation of data instances and functions evaluated on these instances are

part of all machine learning systems. Generalization is the property that the

system will perform well on unseen data instances

There are two main types of machine learning:

1- Supervised learning:

algorithms are trained on labelled examples, i.e., input where the desired

output is known. The supervised learning algorithm attempts to generalize

a function or mapping from inputs to outputs which can then be used

speculatively to generate an output for previously unseen inputs.

3

2- Unsupervised learning:

algorithms operate on unlabeled examples, i.e., input where the desired

output is unknown. Here the objective is to discover structure in the data

(e.g. through a cluster analysis), not to generalize a mapping from inputs to

outputs.

This study uses supervised learning method of machine learning.

Neural Networks

Artificial neural networks (ANNs) are computational models inspired by an

animal's central nervous systems (in particular the brain) which is capable of

machine learning as well as pattern recognition.

Artificial neural networks are generally presented as systems of interconnected

"neurons" which can compute values from inputs.

Like other machine learning methods neural networks have been used to solve a

wide variety of tasks that are hard to solve using ordinary rule-based

programming, including computer vision and speech recognition.

There are many types of ANNs, the type that was used in this study is Multi-Layer

Perceptron (MLP) which is a feedforward network. With bipolar sigmoid

activation function and backpropagation training method.

Sign language

A sign language is a language which uses manual communication and body

language to convey meaning, as opposed to acoustically conveyed sound patterns.

This can involve simultaneously combining hand shapes, orientation and

movement of the hands, arms or body, and facial expressions to fluidly express a

speaker's thoughts.

4

Wherever communities of deaf people exist, sign languages develop. Signing is

not only used by the deaf it’s also used by people who can hear, but cannot

physically speak.

There are typically three types of signing (Drew, 2004):

1- Words spelling, which is the most used type of spelling where meanings

are represented by hands and body moves (Gestures)

2- Fingerspelling, which is the less used type of spelling where words are

made using a manual alphabet (Postures). Fingerspelling is used to

complement the vocabulary of the sign language when spelling individual

letters of a word is the preferred or only option, such as with proper names

or the titles of works, etc.

3- Non-manual features, facial expressions and tongue, mouth and body

position

This study only focuses on fingerspelling of the Arabic alphabet.

State of the art

First we have to distinguish between the terms gesture recognition and posture

recognition.

A gesture is a way of communication that involves body part movement, and thus,

a gesture recognition is the recognition of dynamic related sequence of images

(video).

A posture on the other hand, is a static image that involves no movement, and

thus, a posture recognition is the recognition of static images that are not related to

each other.

This study proposes a solution for fingerspelling of Arabic sign language, which is

a posture recognition system.

5

Sign Language Recognition Systems

The problem of recognizing the sign language in real time was intensively studied

in the past in prestigious universities like MIT, University of Milan and the Royal

Melbourne Institute of Technology, as well as in private companies such as

Fujitsu.

To be able to recognize the signs, a set of measurable features of the body that

make difference between signs is needed. The body characteristics that make the

difference between the signs are the shape of the hand, the angle from each joint

of the fingers and wrist, or arm position and trajectory.

To implement such a system, researches have been conducted in two main

directions (Vamplew, 1990):

1. Systems that use specialized hardware devices for data acquisition: robotic

glove to measure finger and hand joint angles, and various mechanical,

optical, magnetic and acoustic devices to detect hand position and

trajectory

2. Systems that use image processing and computer vision techniques to

detect the characteristics of the hand in images taken with a video or web

camera

Vision-Based Proposed Solutions

Detection

Haar-Like features and other shape based methods:

The Adaboost learning algorithms are currently one of the fastest and most

accurate approaches for object classification.

(Kölsch & Turk, 2004) Exploited the limitations of hand detection using the

Viola-Jones detector. A new rectangle feature type was proposed to have more

feature combinations than the basic Haar-like features proposed by Viola and

6

Jones. As the feature pool for learning contains about 107 features, a highly

computational cost is needed for training.

(Ong & Bowden, 2004) Applied the Viola-Jones detector to localize/detect human

hands, and then exploited shape context to classify differences between hand

posture classes.

Other approaches

(Athitsos & Sclaroff, 2003) Formulated the hand posture recognition problem as

an image database index problem. A database contains 26 hand shape prototypes,

and each prototype has 86 difference viewpoint images. A probabilistic line

matching algorithm was applied to measure the similarity between the test image

and the database for recognizing hand posture class and estimating hand pose.

Some others used color segmentations combined with other detection methods of

hand in binary images.

Recognition

There have been many machine learning methods used in the field of sign

language recognition through the years, the authors have studied many previous

works and highlighted the most used methods.

Neural Networks

Neural networks are famous learning models in image recognition applications,

different types of NNs were used in sign language recognition systems. Some

researchers used Hopfield Neural Networks (Huang & Huang, 1998), others

preferred Recurrent Neural Networks (Murakami & Taguchi, 1991) and the

majority of other researchers used Feedforward Neural Networks (Vamplew,

1990), (Ma & Khorasani, 2004) and (Geman, Bienenstock, & Doursat, 1992).

7

Support Vector Machines

Support vector machines (SVM) are supervised learning models with associated

learning algorithms that analyze data and recognize patterns, used for

classification and regression analysis. Many studies were conducted with SVMs

and gave close results to neural networks, and depending on the features that were

selected some people got better results using support vector machines (Rashid, Al-

Hamadi, & Michaelis, 2010) (Huang, Hu, & Chang, 2009).

Hidden Markov Models

A hidden Markov model (HMM) is a statistical Markov model in which the

system being modeled is assumed to be a Markov process with unobserved

(hidden) states. A HMM can be presented as the simplest dynamic Bayesian

network. Consequently, they seem ideal for visual recognition of complex

structured hand gestures such as are found in sign language (Starner T. , 1995). A

study by (Starner & Pentland, 1997) conduct real-time HMM-based system for

recognizing sentence level American Sign Language (ASL) without explicitly

modeling the fingers. The experiment attains a word accuracy of 92% having 40

word lexicon.

System Design and Implementation

System Requirements

Functional requirements

1- Recognition of Arabic sign language alphabet

Non-functional requirements

1- Compatibility

2- Efficiency

3- Effectiveness

4- Portability

5- Response time

6- Robustness

8

7- Security

8- Testability

System Analysis

Methodology

In this system spiral model was used. Spiral model is a combination of iterative

development process model and sequential linear development model i.e.

waterfall model with very high emphasis on risk analysis.

It allows for incremental releases of the product, or incremental refinement

through each iteration around the spiral.

The spiral model has four phases. A software project repeatedly passes through

these phases in iterations called Spirals.

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

9

The work went through several iterations each one separated into four phases

which are:

1. Identification: in the first iteration this phase started with research and

studying about the previous work on the same aspect to gather and identify

the system requirements. In the next iterations this phase was for

determine the next step of the system progress like choosing technics to be

used or algorithms to be applied

2. Design: this phase includes the conceptual design of the system during

the first iteration and the final design in the subsequent spirals.

3. Build: Construct phase refers to production of the actual software product

at every spiral. In this project in each iteration a version of the application

was produced.

4. Evaluation and Risk Analysis: Risk Analysis includes identifying,

estimating, and monitoring technical feasibility and management risks.

SWOT ANALYSIS

10

System Design

The system design basically consists of three parts:

Skin Detection

The first step in skin detection was identifying the human skin color range. The

authors of this study have studied different color spaces, mainly, RGB,

Normalized RGB, HSV and YCrCb.

After studying the different color spaces the authors concluded that HSV and

YCrCb were the least sensitive for illumination variance and identified the skin

color range to be:

1- HSV:

a. 2 < H < 40

b. 40 < S < 255

c. 0 < V < 255

2- YCrCb:

a. 0 < Y < 255

b. 135 < Cr < 185

c. 80 < Cb < 135

And after studying the various results and by studying the state of the art

approaches the study used YCrCb color space as it had the most tolerance for light

conditions and gave the best results in detecting the skin and RGB & HSV color

spaces were dumped.

11

The second step was skin segmentation using the identified skin color range to

threshold the image resulting a binary image with the skin colors in white and all

other colors in black.

Finally two morphological operations where applied, erosion and dilation, to

eliminate the noise.

Additional filters and morphological operations were added if necessary

12

Skin Detection

Start

PC in skin color
range

Make pixel blackMake pixel white

Loop all pixels
in grabbed frame

PC= Pixel
Color

End

NO
YES

0

13

Hand Detection

After the previous part produced a binary image showing only skin parts in white,

the next step that was conducted was extracting all the contours of the image.

Then after finding all the contours a loop was made to extract the biggest contour

in the image to find the hand; supposing that the hand had the biggest skin area in

the image –closest skin part to the camera.

After detecting the hand, the minimum rectangle that enclosed the hand area was

extracted. And finally the hand was extracted from the image by extracting the

part of the image that was covered by that rectangle.

However, the dimensions of the extracted area varied depending on the distance

between the hand and the webcam, to solve that problem the images needed to be

resized to fixed dimensions.

After studying the hand geometry the authors have concluded that the dimensions

of the hand must be Length > Width, and the authors have finally concluded the

ratio length = 2*width. Thus the images were resized to 50*100

14

Start

Find all contours
Biggest

Contour=0

Current
Contour>Biggest

Contour

Take binary image

Biggest
Contour

=
Current
Contour

Still more
contours?

Yes

Yes

Get next contour

Region of
Interest =

Biggest
Contour

End

Find Region of
interest

1

No

No

15

Start

ROI = area
surrounded
by biggest
contour

Crop area enclosed
by minimum

rectangle surrounds
ROI

RROI=Resize
to 50*100

End

Resize2

Recognition

After studying the state of the art in the static image recognition field (posture

recognition) and studying the results of ANN and SVM, the authors chose ANN

over SVM because it gave relatively better results with respect to the extracted

feature vector they chose.

The neural network system that the authors used was MLP ANN neural network

implemented in OpenCV which is a feedforward network. The activation function

16

that was used is symmetric sigmoid. And as a training method the authors used

backpropagation with a 0.2 learning rate and 0.1 momentum.

The first step in the recognition part was collecting the dataset. Initially samples

were made for the different 28 Arabic letters, 300 samples on average for each

letter. The study however, was conducted on the first 7 letters with 30 samples for

each letter to train the system with.

Letter Desired output

 15 أ

 45 ب

 75 ت

 105 ث

 135 ج

 165 ح

 195 خ

The second step was to prepare the input of the system. The system input was a

[1*150] feature vector resulting from a 2-D image projection over both axis. The

projection on Y (height) resulted a feature vector [1*100] and projection on X

(width) resulted another feature vector [1*50], the final [1*150] feature vector was

made from the concatenation of both previous vectors.

The final part was training the neural network and evaluating its performance, the

test images had the same image processing and input preprocessing that was

conducted on the train dataset.

The recognitions results will be included in the results section.

17

Create Features
Vector

Start

Vx=
Projection of

RROI on X-axis

Vy=
Projection of

RROI on Y-axis

Feature
Vector

V = Vx+Vy

End

3

18

System Implementation

Tools

MS visual studio

Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It is used to develop computer programs for Microsoft Windows

superfamily of operating systems, as well as web sites, web applications and web

services. Visual Studio uses Microsoft software development platforms such as

Windows API, Windows Forms, Windows Presentation Foundation, Windows

Store and Microsoft Silverlight. It can produce both native code and managed

code.

Visual Studio supports different programming languages and allows the code

editor and debugger to support nearly any programming language, provided a

19

language-specific service exists. Built-in languages include C, C++ and C++/CLI

(via Visual C++), VB.NET (via Visual Basic .NET), C# (via Visual C#), and F#.

Visual C#

C# is a programming language that is designed for building a variety of

applications that run on the .NET Framework. C# is simple, powerful, type-safe,

and object-oriented. The many innovations in C# enable rapid application

development while retaining the expressiveness and elegance of C-style

languages.

Visual C# is an implementation of the C# language by Microsoft. Visual Studio

supports Visual C# with a full-featured code editor, compiler, project templates,

designers, code wizards, a powerful and easy-to-use debugger, and other tools.

The .NET Framework class library provides access to many operating system

services and other useful, well-designed classes that speed up the development

cycle significantly.

EmguCV

EmguCV is a cross platform .Net wrapper to the OpenCV image processing

library. Allowing OpenCV functions to be called from .NET compatible

languages such as C#, VB, VC++, IronPython etc. The wrapper can be compiled

and run on Windows, Linux, Mac OS X, iPhone, iPad and Android devices.

OpenCV (Open Source Computer Vision Library) is an open source computer

vision and machine learning software library. OpenCV was built to provide a

common infrastructure for computer vision applications and to accelerate the use

of machine perception in the commercial products. Being a BSD-licensed product,

OpenCV makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a

comprehensive set of both classic and state-of-the-art computer vision and

machine learning algorithms. These algorithms can be used to detect and

20

recognize faces, identify objects, classify human actions in videos, track camera

movements, track moving objects, extract 3D models of objects, produce 3D point

clouds from stereo cameras, stitch images together to produce a high resolution

image of an entire scene, find similar images from an image database, remove red

eyes from images taken using flash, follow eye movements, recognize scenery and

establish markers to overlay it with augmented reality, etc. OpenCV has more than

47 thousand people of user community and estimated number of downloads

exceeding 7 million. The library is used extensively in companies, research groups

and by governmental bodies.

Along with well-established companies like Google, Yahoo, Microsoft, Intel,

IBM, Sony, Honda, Toyota that employ the library, there are many startups such

as Applied Minds, VideoSurf, and Zeitera, that make extensive use of OpenCV.

OpenCV’s deployed uses span the range from stitching streetview images

together, detecting intrusions in surveillance video in some countries, monitoring

mine equipment in China, helping robots navigate and pick up objects at Willow

Garage, detection of swimming pool drowning accidents in Europe, running

interactive art in Spain and New York, checking runways for debris in Turkey,

inspecting labels on products in factories around the world on to rapid face

detection in Japan.

It has C++, C, Python, Java and MATLAB interfaces and supports Windows,

Linux, Android and Mac OS. OpenCV leans mostly towards real-time vision

applications and takes advantage of MMX and SSE instructions when available. A

full-featured CUDA and OpenCL interfaces are being actively developed right

now. There are over 500 algorithms and about 10 times as many functions that

compose or support those algorithms. OpenCV is written natively in C++ and has

a template interface that works seamlessly with STL containers.

Configurations and specifications

There are no specific configurations that were needed for this study. However

suitable lighting conditions were taken under consideration.

21

An off-the-shelf webcam was used to conduct this study

Webcam specifications

Microsoft® LifeCam VX-800 with USB 2.0 interface

Seonsor: CMOS VGA sensor technology

Resolution: 0.31 megapixel (640 x 480 pixels)

Testing

After training the system, the system was tested using 100 samples for each letter.

The results are shown in the table below.

 خ ح ج ث ت ب أ

 0 0 0 0 0 7 93 أ

 0 0 0 0 11 87 2 ب

 0 0 0 30 60 10 0 ت

 0 0 0 100 0 0 0 ث

 10 25 65 0 0 0 0 ج

 20 70 10 0 0 0 0 ح

 93 7 0 0 0 0 0 خ

22

Results

The authors have evaluated the system using 100 sample for each letter of the 7

letters and the results were as the following:

Letter Recognition rate

 %93 أ

 %87 ب

 %60 ت

 %100 ث

 %65 ج

 %70 ح

 %93 خ

After analyzing the results, the study concluded that the variations of accuracy of

the proposed solution results from changing variables like

 The features that the system was based on.

 The neural network topology and parameter.

 The hand detection algorithm.

The system results can be improved by

 Taking other approaches to extract more discriminant features

 Changing the neural network parameters such as layers sizes and learning

parameters, and trying different neural network types

 Using a more robust and accurate hand detection algorithm

Problems and limitations

The authors have faced many problems during their study, the most important

problems were the light conditions and the presence of other big skin-like color

parts in the camera feed.

23

Although the proposed solution and selected color space is flexible in its

illumination conditions, the irregular improper luminance can paralyze the

recognition system, such effects cause poor processed images, thus resulting

wrong recognition.

The second major problem is the possibility of having skin-like colors within the

camera view that cover bigger continuous binary area than the hand does, making

it the better candidate for having the biggest contour and causing improper hand

detection and thus wrong recognition

The main limitation of the system is the hand detection part where the authors

used a naïve and simple part which is the biggest detected contour.

24

Conclusion and future work

In this study, we have provided a way to facilitate the communication between

deaf and hearing people using a webcam and a neural network approach. As

shown by the experimental results, the solution we have proposed in this study can

be efficiently used in fingerspelling situations.

The main advantage of our approach over the other attempts is the fact that it

requires no additional hardware equipment or special clothes to recognize the

signs. The accuracy of the system could be also increased if a more robust skin

detection algorithm will be used.

Future work may also be done in order to use another classification model in the

supervised learning scenario, such as support vector machines (Steinwart &

Christmann, 2008) or Bayesian Learning (Mitchell, 1997).

Future vision & applications

The authors of this study envisioned many probabilities, some of them are:

 A system that detects two hands without being affected by the existence of

other body parts like the face

 A system that recognizes dynamic sequential signs (gesture recognition)

using another learning scenarios, such as Hidden Markov Models (HMM)

and language syntax probabilistic dictionary.

 A system that is robust enough to be used in official and private offices

and organizations to facilitate deaf people in their daily life

communication difficulties.

 An educational sign language learning system that facilitates learning sign

language by evaluating the user’s sign and comparing it to the system and

correcting the incorrect signs for the user.

 A sign-to-speech system that uses the current sign-to-text system as an

intermediate step.

25

 A mobile application that uses sign-to-speech to allow the deaf individual

to communicate with hearing parties by translating the deaf party sign

language in front of the camera to voice that is transmitted to the hearing

party.

26

References

Athitsos, V., & Sclaroff, S. (2003). Estimating 3D hand pose from a cluttered

image. Computer Vision and Pattern Recognition, 2003. Proceedings.

2003 IEEE Computer Society Conference (pp. II-432-9 vol. 2). IEEE.

Cutler, R., & Turk, M. (1998). View-based interpretation of real-time optical flow

for gesture recognition. 2013 10th IEEE International Conference and

Workshops on Automatic Face and Gesture Recognition (FG) (pp. 416-

416). IEEE Computer Society.

Drew, P. (2004, December 22). Research on Sign Language Recognition.

Retrieved June 19, 2014, from http://www-i6.informatik.rwth-

aachen.de/~dreuw/database.php

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the

bias/variance dilemma. Neural computation, 1-58.

Huang, C., & Huang, W. (1998). Sign language recognition using model-based

tracking and a 3D Hopfield neural network. Machine vision and

applications, 292-307.

Huang, D.-Y., Hu, W.-C., & Chang, S.-H. (2009). Vision-based hand gesture

recognition using PCA+ Gabor filters and SVM. Vision-based hand

gesture recognition using PCA+ Gabor filters and SVM (pp. 1-4). IEEE.

Kölsch, M., & Turk, M. (2004). Robust Hand Detection. FGR, (pp. 614-619).

Ma, L., & Khorasani, K. (2004). Facial expression recognition using constructive

feedforward neural networks. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 1588-1595.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

27

Murakami, K., & Taguchi, H. (1991). Gesture recognition using recurrent neural

networks. SIGCHI conference on Human factors in computing systems,

(pp. 237-242).

Ong, E.-J., & Bowden, R. (2004). A boosted classifier tree for hand shape

detection. Automatic Face and Gesture Recognition, 2004. Proceedings.

Sixth IEEE International Conference (pp. 889-894). IEEE.

Rashid, O., Al-Hamadi, A., & Michaelis, B. (2010). Utilizing invariant descriptors

for finger spelling American sign language using SVM. In Advances in

Visual Computing (pp. 253-263). Springer.

Starner, T. (1995). Visual Recognition of American Sign Language Using Hidden

Markov Models. DTIC Document.

Starner, T., & Pentland, A. (1997). Real-time american sign language recognition

from video using hidden markov models. In Motion-Based Recognition

(pp. 227-243). Springer.

Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer.

Vamplew, P. W. (1990). Recognition of Sign Language Using Neural Networks.

Flinders University of South Australia.

28

Appendices

Appendix A

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using Emgu.CV;
using Emgu.CV.Structure;
using Emgu.Util;
using System.IO;
using System.Diagnostics;
using System.Threading;
using System.Media;
using Emgu.CV.UI;
using Emgu.CV.CvEnum;
using Emgu.CV.ML;
using Emgu.CV.ML.Structure;

namespace Junior_Alpha
{
 public partial class Form1 : Form
 {

 private Capture frameGrabber; //instance to connect with the camera

 #region colorVariables
 //RGB
 private int MinRed, MinGreen, MinBlue;
 private int MaxRed, MaxGreen, MaxBlue;
 //HSV
 Hsv HSV_min, HSV_max;
 private double MinHue, MinSat, MinVal;
 private double MaxHue, MaxSat, MaxVal;
 //YCrCb
 Ycc YCrCb_min, YCrCb_max;
 private double MinY_var, MinCr_var, MinCb_var;
 private double MaxY_var, MaxCr_var, MaxCb_var;
 #endregion

 Image<Bgr, Byte> currentFrame;
 Image<Hsv, Byte> currentFrameHSV;
 Image<Ycc, Byte> currentFrameYCC;
 Image<Gray, Byte> skinFiltered, filteredHand;
 StructuringElementEx rect_12, rect_6;

 MCvBox2D box;

29

 Graphics g;
 Font font;
 SolidBrush solidBrush;

 int counter;
 int framNameCounter;
 String frameName;

 static int resizeWidth = 50;
 static int resizeHeight = 100;

 //needs to be changed to resizeHeight+resizeWidth if projecting on 2
axis
 static int size = resizeWidth + resizeHeight;
 //static int size = resizeHeight*resizeWidth;

 static int letterNum = 7;
 static int sampleNum = 30;
 static int trainSamplesCount = letterNum * sampleNum;

 ANN_MLP network;
 Matrix<int> layerSize = new Matrix<int>(new int[] { 150, 50, 1 });
 MCvANN_MLP_TrainParams parameter = new MCvANN_MLP_TrainParams();
 Matrix<float> traindataMatrix = new Matrix<float>(trainSamplesCount,
size);
 Matrix<float> responseMatrix = new Matrix<float>(trainSamplesCount,
1);
 Matrix<float> sample = new Matrix<float>(1, size);
 Matrix<float> output = new Matrix<float>(1, 1);

 Bitmap[] Sample = new Bitmap[trainSamplesCount];
 Bitmap TestSamplee;

 string letter;

 public Form1()
 {
 InitializeComponent();

 try
 {
 #region colorDefenition

 //calculateRGBColorThreshold();
 calculateHSVColorThreshold();
 calculateYCCColorThreshold();

 HSV_min = new Hsv(MinHue, MinSat, MinVal);
 HSV_max = new Hsv(MaxHue, MaxSat, MaxVal);

 YCrCb_min = new Ycc(MinY_var, MinCr_var, MinCb_var);
 YCrCb_max = new Ycc(MaxY_var, MaxCr_var, MaxCb_var);

 #endregion

 //kernels for Erode & Dilate filters

30

 rect_12 = new StructuringElementEx(12, 12, 6, 6,
Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT);
 rect_6 = new StructuringElementEx(6, 6, 3, 3,
Emgu.CV.CvEnum.CV_ELEMENT_SHAPE.CV_SHAPE_RECT);

 //font for drawing recognized letter on frame
 font = new Font("Arial", 72);
 solidBrush = new SolidBrush(Color.Chartreuse);

 //contour box
 box = new MCvBox2D();

 //frameSave variables
 counter = 0;
 framNameCounter = 1;

 // initialize capture instance

 //read from video file
 //frameGrabber = new Capture(@".\..\..\M2U00253.MPG");

 //read from camera id #0
 frameGrabber = new Capture(0);

 // append event handler
 Application.Idle += new EventHandler(processFrame);

 Load_DataSet();
 BuildNeuralNetwork();
 trainNetwork();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 }

 private void Load_DataSet()
 {
 //read samples from images
 for (int i = 0; i < trainSamplesCount; i++)
 {
 Sample[i] = new Bitmap("TRAIN SET\\" + i + ".bmp");

 for (int y = 0; y < resizeHeight; y++)
 {
 for (int x = 0; x < resizeWidth; x++)
 {
 Color pixelColor = Sample[i].GetPixel(x, y);
 if (pixelColor.R != 0)
 {
 traindataMatrix[i, y] = traindataMatrix[i, y] +
1;
 traindataMatrix[i, resizeHeight + x] =
traindataMatrix[i, resizeHeight + x] + 1;
 }

31

 }
 }

 Console.WriteLine("Loaded pattern: " + i);

 //set expected output to
 //15 if sample = 0:30 (pattern #1)
 //and so on...
 //needs to be checked if choosing smaller values can result
better evaluation/training
 if (i >= 0 && i < 30)
 responseMatrix[i, 0] = 15;
 if (i >= 30 && i < 60)
 responseMatrix[i, 0] = 45;
 if (i >= 60 && i < 90)
 responseMatrix[i, 0] = 75;
 if (i >= 90 && i < 120)
 responseMatrix[i, 0] = 105;
 if (i >= 120 && i < 150)
 responseMatrix[i, 0] = 135;
 if (i >= 150 && i < 180)
 responseMatrix[i, 0] = 165;
 if (i >= 180 && i < 210)
 responseMatrix[i, 0] = 195;

 }

 }

 //build a new neural network ANN_MLP object and set the learning
parameter object
 private void BuildNeuralNetwork()
 {
 //alpha and beta = 0.1; activation function parameters
 network = new ANN_MLP(layerSize,
Emgu.CV.ML.MlEnum.ANN_MLP_ACTIVATION_FUNCTION.SIGMOID_SYM, 1.0, 1.0);

 //200 iteration; error = 0.0e-6
 parameter.term_crit = new MCvTermCriteria(2000, 0.0e-6);
 //backpropagation training
 parameter.train_method =
Emgu.CV.ML.MlEnum.ANN_MLP_TRAIN_METHOD.BACKPROP;
 //learning rate
 parameter.bp_dw_scale = 0.2;
 //momentum
 parameter.bp_moment_scale = 0.1;

 }

 //train the network using the input/expectedOutput matrices
 //parameter is the object that sets the learning method and
variables
 private void trainNetwork()
 {
 network.Train(traindataMatrix, responseMatrix, null, parameter,
Emgu.CV.ML.MlEnum.ANN_MLP_TRAINING_FLAG.DEFAULT);

32

 Console.WriteLine("done");
 }

 //a function to extract vector from the current frame
 //and pass it to evaluation in the neural network
 private void predictCurrentFrame(Image<Gray, Byte> image)
 {
 sample = new Matrix<float>(1, size);
 TestSamplee = image.Bitmap;
 for (int y = 0; y < resizeHeight; y++)
 {
 for (int x = 0; x < resizeWidth; x++)
 {
 Color pixelColor = TestSamplee.GetPixel(x, y);
 if (pixelColor.R != 0)
 {
 sample[0, y] = sample[0, y] + 1;
 sample[0, resizeHeight + x] = sample[0, resizeHeight
+ x] + 1;
 }
 }
 }
 network.Predict(sample, output);

 DrawLetter(output[0, 0]);
 }

 //a function to grab the frames using timer ticks (10ms)
 //replaced in the 2.8 version with
 //Application.Idle += new EventHandler(processFrame);
 private void timer1_Tick(object sender, EventArgs e)
 {
 processFrame(sender, e);
 }

 private void processFrame(object sender, EventArgs e)
 {
 //get the frame from the camera handler
 currentFrame = frameGrabber.QueryFrame();

 if (currentFrame != null)
 {

 //counter to save the current frame with its name set to its
number
 counter++;

 #region imageProcessing
 currentFrameHSV = currentFrame.Convert<Hsv, Byte>();
 currentFrameYCC = currentFrame.Convert<Ycc, Byte>();

 if (radioButtonHSV.Checked)
 skinFiltered = currentFrameHSV.InRange(HSV_min,
HSV_max);
 else
 skinFiltered = currentFrameYCC.InRange(YCrCb_min,
YCrCb_max);

33

 CvInvoke.cvErode(skinFiltered, skinFiltered, rect_12, 1);
 CvInvoke.cvDilate(skinFiltered, skinFiltered, rect_6, 2);
 //CvInvoke.cvErode(filtered, filtered, rect_6, 2);
 //CvInvoke.cvDilate(filtered, filtered, rect_6, 2);

 ExtractContour(skinFiltered);
 #endregion

 //used as necessary from the GUI checkboxes
 #region GUI FILTERS
 if (checkBox3.Checked)
 skinFiltered._SmoothGaussian(3);

 if (checkBox1.Checked)
 skinFiltered = skinFiltered.Copy().SmoothMedian(3);

 if (checkBox2.Checked)
 skinFiltered = FillHoles(skinFiltered.Copy());

 if (checkBox4.Checked)
 skinFiltered._Erode(1);

 if (checkBox5.Checked)
 skinFiltered._Dilate(1);

 if (checkBox6.Checked)
 skinFiltered._Erode(1);

 #endregion

 //save current frame if checkbox is checked
 //save detected hand in bottom right imagebox [50*100]
 #region DATASET COLLECT
 if (checkBox_Skin.Checked)
 {
 if (counter % 10 == 0)
 {
 frameName = @".\data_set\image_" +
letterSelector.Text + "_";
 frameName = frameName + framNameCounter + ".bmp";
 filteredHand.Save(@frameName);
 framNameCounter++;
 }
 }
 #endregion

 //make a copy of the binary image
 filteredHand = skinFiltered.Copy();

 //set the image to the cropped part of the binary image
 //crop the rectangle that encloses the hand contour
 filteredHand.ROI = box.MinAreaRect();

 //resize the image using the defined variables, 50*100
 filteredHand = filteredHand.Resize(resizeWidth,
resizeHeight, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);

34

 //debug to confirm detected hand image height and width
[50*100]
 ROIH.Text = filteredHand.Height + "";
 ROIW.Text = filteredHand.Width + "";

 //show final results on their corresponding imageboxes
 pictureBoxCurrentFrame.Image = currentFrame;
 pictureBoxSkinFiltered.Image = skinFiltered;
 imageBoxTracked.Image = filteredHand;

 //pass each frame to the neural network and evaluate it
 predictCurrentFrame(filteredHand);
 }
 }

 //a function to extract all contours in the image and then return
the biggest contour
 //hand is supposed to be the biggest part of skin in the image
 //keep hand closer to camera than other parts of body like face
 private void ExtractContour(Image<Gray, Byte> skin)
 {
 using (MemStorage storage = new MemStorage())
 {

 Contour<Point> contours =
skin.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST, storage);

 Contour<Point> biggestContour = null;

 //FIND BIGGEST CONTOUR LOOP

 Double Result1 = 0;
 Double Result2 = 0;
 while (contours != null)
 {
 Result1 = contours.Area;
 if (Result1 > Result2)
 {
 Result2 = Result1;
 biggestContour = contours;
 }
 contours = contours.HNext;
 }

 if (biggestContour != null)
 {

 Contour<Point> currentContour =
biggestContour.ApproxPoly(biggestContour.Perimeter * 0.0025, storage);
 //DRAW CONTOUR
 currentFrame.Draw(currentContour, new
Bgr(Color.LimeGreen), 2);

 biggestContour = currentContour;
 box = biggestContour.GetMinAreaRect();//minimumRectangle
that holds the contours
 }

35

 }
 }

 //a function to redraw the frame with the recognized letter on top
left
 private void DrawLetter(float sample)
 {
 if (sample >= 0 && sample < 30)
 letter = "أ";
 if (sample >= 30 && sample < 60)
 letter = "ب";
 if (sample >= 60 && sample < 90)
 letter = "ت";
 if (sample >= 90 && sample < 120)
 letter = "ث";
 if (sample >= 120 && sample < 150)
 letter = "ج";
 if (sample >= 150 && sample < 180)
 letter = "ح";
 if (sample >= 180 && sample < 210)
 letter = "خ";

 g = Graphics.FromImage(pictureBoxCurrentFrame.Image.Bitmap);
 g.DrawString(letter, font, solidBrush, 10, 10);
 //g.DrawString(sample.ToString(), font, solidBrush, 10, 10);
 }

 //a function to fill any holes inside closed contours
 private Image<Gray, byte> FillHoles(Image<Gray, byte> image)
 {
 var resultImage = image.CopyBlank();
 Gray gray = new Gray(255);
 using (var mem = new MemStorage())
 {
 for (var contour = image.FindContours(
 CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
 RETR_TYPE.CV_RETR_CCOMP,
 mem); contour != null; contour = contour.HNext)
 {
 resultImage.Draw(contour, gray, -1);
 }
 }

 return resultImage;
 }

 }
}

