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Introduction 
Every business needs artificial intelligence.  
 
But not every business has the capability to build, maintain, and generate value from AI 
in-house. 
Spike makes AI accessible for all businesses, governments and other enterprises.  
 
By harnessing the power of your data to assist – not displace – humans at work, we improve 
business efficiency and productivity. 
 
Spike is an artificial intelligence company. We help our customers do great things with data 
become AI-driven and put machine learning and artificial intelligence at the heart of their 
company. 
 
one thing that businesses don't always understand it's their data that is their biggest asset they 
need to look after that data and harness it to its full potential and that's where AI and machine 
learning can come in it enables you to turn what is a hugely valuable asset into something that 
generates revenues profits and sustainable growth for your company to see examples of 
companies that are using AI amazingly 
 
you don't have to look much further than Netflix and Amazon Amazon for example attribute 35% 
of their sales to their algorithms which generate recommendations and personalized product 
offerings Netflix say as much as 75% of all content is consumed by virtue of their AI-driven 
recommendation systems 
 
Spikes uniquely positioned to help businesses become AI-driven we give them the technology 
and the skills they need to do this or with a business model that works for them so first and 
foremost 
 
Spike built an artificial intelligence system that becomes a central system of intelligence within a 
company's business it streams any kind of data from anywhere into itself and interprets that 
data and then rapidly deploy machine learning and artificial intelligence the insights and the 
outputs of those algorithms can all be taken back into your other business systems and power 
automated intelligent AI-driven decisions 
 
we don't just give companies the technology we take full ownership of the problem we give them 
the skills in the form of a managed service and a commercial model that works for them so 
businesses subscribe to Spike and we take ownership of delivering value from their data using 
machine learning in AI and 
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That's the difference with Spike it's full service its technology its people and it's a business 
model that our customers want to engage with. 

What is Spike? 
Spike, it’s an online platform that makes AI accessible for all businesses, governments and 
other enterprises.  
 
An easy-to-use online platform that provides all of this service for the customer via a 
subscription model 

 
1.  mine data warehouse 
2.  Interactive Analytics 
3.  Prediction and forecasting report.  

 
All of these futures without neet to any: 

● No AI or machine learning experience required. 
● No infrastructure need.  
● 256-bit military encryption we ensure you a 100% encryption for your data. 
● 50% more accurate in forecasts by reducing forecasting time from months to hours. 
● Messy data? No problem, our team can help to sort it out. 
● Simple commercial model our subscription models are simple and transparent.  
● Easily integrate with your systems for any CRM, ERP or any other tools. 
● We always here to help easy onboarding and ongoing support from our team of experts 

 

Data Warehouse 
A data warehouse is a central repository of information and data.  
Data flows into a data warehouse from transactional systems, relational databases, and other 
sources, typically on a regular cadence.  

Interactive Analytics 
You can start querying data instantly, get results in seconds and pay only for the queries you 
run.  And we make it easy to build stunning visualizations and rich dashboards that can be 
accessed from any browser or mobile device 
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AI and ML to predict the future  
50% more accurate time-series forecasts with machine learning based on the same technology 
used at large enterprises with no machine learning experience required. With hours not months. 

Why use Spike? 
Improving customer experiences 
Improving customer experiences and personalization is the principal reason why marketers are 
adopting AI and machine learning 
 
Boost profits  
Large automotive OEMs can boost their operating profits by up to 16% by deploying AI at scale 
across supply chain operations and production centers. 
 
 
Positive ROI in AI 
McKinsey found that 82% of enterprises adopting machine learning and AI have gained a 
financial return from their investments 
 
Grow revenues and profits 
Spike fuels competitive advantage. It adds an intelligence layer to existing systems and uses AI 
to generate insights, make predictions, and optimize  
business processes. 
 
AI-powered businesses grow:  

● 30% faster 
● 50% higher 
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How to use Spike? 
1- Import Your Data 
Datasets are required to train predictors, which are then used to generate forecasts. 
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2- Train A Predictor 
Train a predictor, a custom model with the power of Spike AI and ML.  
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3- Generate Forecasts 
Generate forecasts using your trained predictors. 

 

 

  

13 



Market Size:  
AI and machine learning have the potential to create an additional $2.6T in value by 2020 in 
Marketing and Sales, and up to $2T in manufacturing and supply chain planning. 
 
IDC predicts worldwide spending on cognitive and Artificial Intelligence systems will reach 
$77.6B in 2022. 
 
374,000,000$ Expected spending on AI systems in MEA for 2020 
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Spike Target Market:  

Retail / E-Commerce  
Increase forecasting and rebuying accuracy to drive profitability, avoid stockouts, optimize 
inventory sell-through, and reduce wastage. 

Manufacturing  
Reduce costs through better operational foresight, enabling more optimized warehouse 
operations and logistics processes. 

Customer Service 
Develop personal, one-to-one relationships with your customers to increase sales, reduce 
churn, and drive brand loyalty, with unique recommendations and personalized experience.  
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Operating Model: 

Our Business Model: 
With no up-front costs or consultancy fees, our simple subscription-based pricing structure is 
based on two factors: 

● System levels 
● Support Levels 

 

System levels 

  Small 
400$ monthly  

Medium 
700$ monthly   

Large 
1000$ monthly  

Maximum data 
storage  25 GB  50 GB  100 GB 

Ingestion 
frequency  Daily  Hourly  Live 

Support Levels 

  Standard 
400$ monthly 

Premium 
700$ monthly 

 Premium+ 
1000$ monthly 

Dedicated 
Customer Success 

Manager 
Yes  Yes  Yes 

Tailored solution 
enhancements 

12 days per 
year  

24 days per 
year  

24 days per 
year 

Expert support
 

Working hours
 

Working hours
 

24/7 
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Example pricing:  
 
System levels: Small (300$ monthly) + Support Levels: Premium (600$ monthly) = Monthly 
Subscription is: 900$ monthly  
 
The customer at any point can change the plan and scale up or down in it the way that fits his 
needs.  
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Fixed cost per month: 
 

System Levels 

 Cost of good sold  Sales Price  Gross Profit 

System Levels (Small)  194.5  400  195.225 

System Level (Medium)   289.95  700  389.5475 

System Level  (Large)  466.7  1000  506.635 

Support Levels 

  Cost of good sold  Sales Price  Gross Profit 

Support Level 
(Standard)  100  400  285 

Support Level 
(Premium)  170  700  503.5 

Support Level 
(Premium+)  210  1000  750.5 

 
  

18 



Example:  
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The projection for 6 Months  
 

  month 1  month 2  month 3  month 4  month 5  month 6 

REVENUES             

    Revenues model 1  $0.00  $400.00  $800.00  $1,500.00  $2,600.00  $3,600.00 

    Revenues model 2  $0.00  $400.00  $1,100.00  $1,800.00  $2,900.00  $3,600.00 

TOTAL REVENUES  $0.00  $800.00  $1,900.00  $3,300.00  $5,500.00  $7,200.00 

             

COST OF GOODS SOLD             

    Model 1  $0.00  $194.50  $389.00  $678.95  $1,163.40  $1,630.10 

    Model 2  $0.00  $100.00  $200.00  $370.00  $640.00  $850.00 

TOTAL COST OF 
GOODS SOLD 

$0.00  $294.50  $589.00  $1,048.95  $1,803.40  $2,480.10 

             

GROSS PROFIT  $0.00  $505.50  $1,311.00  $2,251.05  $3,696.60  $4,719.90 
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OPERATION EXPENSE  month 1  month 2  month 3  month 4  month 5  month 6 

    CEO Salary  $1,900.00  $1,900.00  $1,900.00  $1,900.00  $1,900.00  $1,900.00 

    CTO Salary  $500.00  $500.00  $500.00  $800.00  $800.00  $800.00 

    Tech, Developer  $400.00  $400.00  $400.00  $500.00  $500.00  $500.00 

    Designer Salary  $0.00  $0.00  $500.00  $500.00  $500.00  $500.00 

    Customer Support Salary  $0.00  $0.00  $0.00  $300.00  $300.00  $300.00 

    Target Ads  $0.00  $200.00  $300.00  $400.00  $500.00  $600.00 

    Conferences 
Sponsor/Attending  $0.00  $0.00  $300.00  $0.00  $0.00  $300.00 

    Rant  $500.00  $500.00  $500.00  $500.00  $500.00  $500.00 

   License  $1,000.00  $0.00  $0.00  $0.00  $0.00  $0.00 

   Utility/Web Hosting/Other 
Expenses  $250.00  $250.00  $250.00  $250.00  $250.00  $250.00 

TOTAL OPERATING 
EXPENSES  $4,550.00  $3,750.00  $4,650.00  $5,150.00  $5,250.00  $5,650.00 

             

NET INCOME (LOSS)  -$4,550.00  -$3,244.50  -$3,339.00  -$2,898.95  -$1,553.40  -$930.10 
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Our Competitor  
With our simple, easy to use platform and great support team our customers do not need any AI 
or machine learning experience required. 
 
Thanks to our partnership with Amazon AWS, Microsoft Azure and Google Cloud there is no 
need for any infrastructure for our customers. We will provide the needed infrastructure and 
manage that for them.  
 
There are two types of customers for this market: 
 

1. Big Corporation which has their own teams and tools, they buy and investment in tech 
tools directly like AWS, Apache Spark and other tools. These tools it’s used on a large 
scale and for a big company with a team, infrastructure-ready, Usually, they are 
technology companies. Here we don't target this type of customer.  

 
2. The second type of customer which we are targeting here in Spike is non-technical and 

small business companies like Nike, Adidas and some e-consumers. The company 
makes a third-party deal with other partners to build their AI and ML models.  
 

And here Spike comes to help this company to use AI and ML in their business to better 
decision making, more efficiency…  
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 SPIKE 

SAP/ORAC
LE/ 
Microsoft  
BI 

ANALYTICS 
Platform 
(ZOHO, Qlik, 
Tableau..) 

DATABRICKS/ 
APACHE 
SPARK 

SnowFlake / 
DATA 
management 
platform 

EASY TO USE ✓ ✓ 
 

✓ 
  ✓ 

 

Data 
Management  

✓ 
 

✓ 
  ✓ 

 
✓ 
 

MENA REGEN ✓ 
 

✓ 
 

✓ 
   

AI/ML for 
forecasting  

✓ 
   ✓ 

  

PRICE ✓    ✓ 
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Go-To-Market Plan 
 

1. Identify opportunities 
We take the time to understand your business objectives and help you identify and 
prioritize your AI opportunities. 
 

2. Quantify opportunities 
Leveraging a sample of your data, our team of AI consultants can build an 
evidence-based case for AI. 
 

3. Business case 
Working closely with you, we’ll agree with the exact scope and pricing build a business 
case for sign off. 
 

4. Kick-off  
Spike team of industry and AI experts help you to configure our AI System and solutions 
to your individual business needs. 

 

Marketing Channel: 
● Blog/Case Study  

Publish reports for many topics for the public to build awareness about data with ML and 
AI. 
 

● Confreasses/Workshop 
Attending this kind of event can build for us a good audience base for our brand and 
services.  
 

● AWS Partner Network in MENA 
Joining the Amazon Web Server partner network can help us to build a good reputation.  
 

● Direct Marketing for a potential customer 
Sending a unique case study/report for our potential customer.  
 

● Target Ads in the web 
That will help us to collect and know potential customers early and in good volume.  
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Why the United Arab Emirates? Why an In5 tech 
innovation incubator? 
 

● Be in UAE that will give us more: speed to test our solution and development  
● A great market is open and ready for new technology  
● The hub for AI and ML in MEA Reagan with easy to grow in the neighboring market.  

 

In5 tech innovation: 
Started in 2013, in5 was created to enable opportunities for entrepreneurs in the technology 
sector in the UAE and the region. Since then, it has engaged with 4,000 technopreneurs that 
have secured over AED 58 million in funding. 
 
in5 offers startups state of the art workspaces, training and meeting rooms, unparalleled 
exposure to local, regional and international investors as well as a constant stream of 
mentorship and sustainability focused activities such as seminars, training sessions and 
workshops. 
 
The innovation centers are designed to offer 5 key benefits to support the growing number of 
students, entrepreneurs and start-ups seeking to get new ideas off the ground in Dubai’s 
competitive markets. 
 
 

● In5 will be our home for the next 6 months to try, learn, and launch our dream. 
● A Creative space will help us to get our startup to the next level. 
● A great opportunity to open our business in the UAE.  

 

How to apply for In5 tech innovation?  

1. SUBMISSION 
Founders and entrepreneurs apply to the incubation program submitting an online application, 
including relevant material and information about their concept and business model. 

2. VALIDATION 
The in5 team shortlists candidates based on various eligibility criteria & invites selected 
candidates to present. 
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3. PRESENTATION 
Shortlisted start-ups present their venture to a committee consisting of various industry experts 
and seasoned entrepreneurs, and answer the committee’s questions. 

4. INCUBATION 
The steering committee selects start-ups and admits them to the incubator. During their 
incubation period, startups access to various benefits that span the incubation value chain. 

5. GRADUATION 
On completion of the incubation phase, start-ups graduate and become part of the in5 alumni 
network. 
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Acrux AI FZ-LLC (Spike) Name Reservation Certificate 
with In5 incubator at Dubai City of interne
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The used programming language in Spike 

Python as programing language:  
Python is an interpreted, high-level, general-purpose programming language. Created by Guido 
van Rossum and first released in 1991, Python's design 
philosophy emphasizes code readability with its notable use of 
significant whitespace. Its language constructs and 
object-oriented approach aim to help programmers write clear, 
logical code for small and large-scale projects. 
 
Python is dynamically typed and garbage-collected. It supports multiple programming 
paradigms, including procedural, object-oriented, and functional programming. Python is often 
described as a "batteries included" language due to its comprehensive standard library. 
 
Python was conceived in the late 1980s as a successor to the ABC language. Python 2.0, 
released in 2000, introduced features like list comprehensions and a garbage collection system 
capable of collecting reference cycles. Python 3.0, released in 2008, was a major revision of the 
language that is not completely backward-compatible, and much Python 2 code does not run 
unmodified on Python 3. 
 

R (programming language) 
R is a programming language and free software environment for 
statistical computing and graphics supported by the R Foundation for 
Statistical Computing. The R language is widely used among 
statisticians and data miners for developing statistical software and 
data analysis. Polls, data mining surveys, and studies of scholarly 
literature databases show substantial increases in popularity; as of 
January 2020, R ranks 18th in the TIOBE index, a measure of 
popularity of programming languages. 
 
A GNU package, source code for the R software environment is written primarily in C, Fortran, 
and R itself and is freely available under the GNU General Public License. Pre-compiled binary 
versions are provided for various operating systems. Although R has a command line interface, 
there are several graphical user interfaces, such as RStudio, an integrated development 
environment. 
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Why Python for Data Analysis? 
For many people, the Python programming language has strong appeal. Since its first 
appearance in 1991, Python has become one of the most popular interpreted pro- gramming 
languages, along with Perl, Ruby, and others. Python and Ruby have become especially 
popular since 2005 or so for building websites using their numer- ous web frameworks, like 
Rails (Ruby) and Django (Python). Such languages are often called scripting languages, as they 
can be used to quickly write small programs, or scripts to automate other tasks. I don’t like the 
term “scripting language,” as it car- ries a connotation that they cannot be used for building 
serious software. Among interpreted languages, for various historical and cultural reasons, 
Python has devel- oped a large and active scientific computing and data analysis community. In 
the last 10 years, Python has gone from a bleeding-edge or “at your own risk” scientific com- 
puting language to one of the most important languages for data science, machine learning, and 
general software development in academia and industry.  
 
For data analysis and interactive computing and data visualization, Python will inevi- tably draw 
comparisons with other open source and commercial programming lan- guages and tools in 
wide use, such as R, MATLAB, SAS, Stata, and others. In recent years, Python’s improved 
support for libraries (such as pandas and scikit-learn) has made it a popular choice for data 
analysis tasks. Combined with Python’s overall strength for general-purpose software 
engineering, it is an excellent option as a pri- mary language for building data applications 
 

Why Not Python? 
While Python is an excellent environment for building many kinds of analytical applications and 
general-purpose systems, there are a number of uses for which Python may be less suitable.  
 
As Python is an interpreted programming language, in general most Python code will run 
substantially slower than code written in a compiled language like Java or C++. As programmer 
time is often more valuable than CPU time, many are happy to make this trade-off. However, in 
an application with very low latency or demanding resource utilization requirements (e.g., a 
high-frequency trading system), the time spent programming in a lower-level (but also 
lower-productivity) language like C++ to achieve the maximum possible performance might be 
time well spent. 
 
Python can be a challenging language for building highly concurrent, multithreaded applications, 
particularly applications with many CPU-bound threads. The reason for this is that it has what is 
known as the global interpreter lock (GIL), a mechanism that prevents the interpreter from 
executing more than one Python instruction at a time. While it is true that in many big data 
processing applications, a cluster of computers may be required to process a dataset in a 
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reasonable amount of time, there are still situations where a single-process, multithreaded 
system is desirable.  
 
This is not to say that Python cannot execute truly multithreaded, parallel code. Python C 
extensions that use native multithreading (in C or C++) can run code in parallel without being 
impacted by the GIL, so long as they do not need to regularly interact with Python objects.  

JavaScript 
JavaScript, often abbreviated as JS, is an interpreted programming 
language that conforms to the ECMAScript specification. JavaScript is 
high-level, often just-in-time compiled, and multi-paradigm. It has 
curly-bracket syntax, dynamic typing, prototype-based object-orientation, 
and first-class functions. 
 
Alongside HTML and CSS, JavaScript is one of the core technologies of the World Wide Web. 
JavaScript enables interactive web pages and is an essential part of web applications. The vast 
majority of websites use it for client-side page behavior, and all major web browsers have a 
dedicated JavaScript engine to execute it. 
 
As a multi-paradigm language, JavaScript supports event-driven, functional, and imperative 
programming styles. It has application programming interfaces (APIs) for working with text, 
dates, regular expressions, standard data structures, and the Document Object Model (DOM). 
However, the language itself does not include any input/output (I/O), such as networking, 
storage, or graphics facilities, as the host environment (usually a web browser) provides those 
APIs. 
 

HTML 
Hypertext Markup Language (HTML) is the standard markup language for 
documents designed to be displayed in a web browser. It can be assisted 
by technologies such as Cascading Style Sheets (CSS) and scripting 
languages such as JavaScript. 
 
Web browsers receive HTML documents from a web server or from local 
storage and render the documents into multimedia web pages. HTML 
describes the structure of a web page semantically and originally included 
cues for the appearance of the document. 
 
HTML elements are the building blocks of HTML pages. With HTML constructs, images and 
other objects such as interactive forms may be embedded into the rendered page. HTML 
provides a means to create structured documents by denoting structural semantics for text such 
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as headings, paragraphs, lists, links, quotes and other items. HTML elements are delineated by 
tags, written using angle brackets. Tags such as ​<img />​ and ​<input />​ directly introduce 
content into the page. Other tags such as ​<p>​ surround and provide information about 
document text and may include other tags as sub-elements. Browsers do not display the HTML 
tags, but use them to interpret the content of the page. 
 

CSS 
Cascading Style Sheets (CSS) is a style sheet language used for describing 
the presentation of a document written in a markup language like HTML. CSS 
is a cornerstone technology of the World Wide Web, alongside HTML and 
JavaScript. 
 
CSS is designed to enable the separation of presentation and content, 
including layout, colors, and fonts. This separation can improve content 
accessibility, provide more flexibility and control in the specification of presentation 
characteristics, enable multiple web pages to share formatting by specifying the relevant CSS in 
a separate .css file, and reduce complexity and repetition in the structural content. 
 
Separation of formatting and content also makes it feasible to present the same markup page in 
different styles for different rendering methods, such as on-screen, in print, by voice (via 
speech-based browser or screen reader), and on Braille-based tactile devices. CSS also has 
rules for alternate formatting if the content is accessed on a mobile device. 
 
The name cascading comes from the specified priority scheme to determine which style rule 
applies if more than one rule matches a particular element. This cascading priority scheme is 
predictable. 
 

PHP 
PHP is a general-purpose programming language originally 
designed for web development. It was originally created by 
Rasmus Lerdorf in 1994; the PHP reference implementation 
is now produced by The PHP Group. PHP originally stood for 
Personal Home Page, but it now stands for the recursive 
initialism PHP: Hypertext Preprocessor. 
 
PHP code may be executed with a command line interface (CLI), embedded into HTML code, or 
used in combination with various web template systems, web content management systems, 
and web frameworks. PHP code is usually processed by a PHP interpreter implemented as a 
module in a web server or as a Common Gateway Interface (CGI) executable. The web server 
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outputs the results of the interpreted and executed PHP code, which may be any type of data, 
such as generated HTML code or binary image data. PHP can be used for many programming 
tasks outside of the web context, such as standalone graphical applications and robotic drone 
control. 
 
The standard PHP interpreter, powered by the Zend Engine, is free software released under the 
PHP License. PHP has been widely ported and can be deployed on most web servers on 
almost every operating system and platform, free of charge. 
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Tools/Library used to build the platform  

Apache HTTP Server 
The Apache HTTP Server, colloquially called Apache, is 
free and open-source cross-platform web server software, 
released under the terms of Apache License 2.0. Apache 
is developed and maintained by an open community of 
developers under the auspices of the Apache Software 
Foundation.  
 
The vast majority of Apache HTTP Server instances run on a Linux distribution, but current 
versions also run on Microsoft Windows and a wide variety of Unix-like systems. Past versions 
also ran on OpenVMS, NetWare, OS/2 and other operating systems, including ports to 
mainframes. 
 
Originally based on the NCSA HTTPd server, development of Apache began in early 1995 after 
work on the NCSA code stalled. Apache played a key role in the initial growth of the World Wide 
Web, quickly overtaking NCSA HTTPd as the dominant HTTP server, and has remained most 
popular since April 1996. In 2009, it became the first web server software to serve more than 
100 million websites. As of August 2019, it was estimated to serve 29% of all active websites, 
ranked 2nd after nginx at 32%, and 32% of the top million websites, ranked 2nd after "Other" 
with 33%. 

PHP Laravel Framework  
Laravel is a free, open-source PHP web framework, created by Taylor 
Otwell and intended for the development of web applications following the 
model–view–controller (MVC) architectural pattern and based on Symfony. 
Some of the features of Laravel are a modular packaging system with a 
dedicated dependency manager, different ways for accessing relational 
databases, utilities that aid in application deployment and maintenance, 
and its orientation toward syntactic sugar. 

Features 
The following features serve as Laravel's key design points (where not specifically noted, 
descriptions refer to the features of Laravel 3):  

● Bundles provide a modular packaging system since the release of Laravel 3, with 
bundled features already available for easy addition to applications. Furthermore, 
Laravel 4 uses Composer as a dependency manager to add framework-agnostic and 
Laravel-specific PHP packages available from the Packagist repository. 

33 



 

● Eloquent ORM (object-relational mapping) is an advanced PHP implementation of the 
active record pattern, providing at the same time internal methods for enforcing 
constraints on the relationships between database objects. Following the active record 
pattern, Eloquent ORM presents database tables as classes, with their object instances 
tied to single table rows. 

 

● Query builder, available since Laravel 3, provides a more direct database access 
alternative to the Eloquent ORM. Instead of requiring SQL queries to be written directly, 
Laravel's query builder provides a set of classes and methods capable of building 
queries programmatically. It also allows selectable caching of the results of executed 
queries. 
 

● Application logic is an integral part of developed applications, implemented either by 
using controllers or as part of the route declarations. The syntax used to define 
application logic is similar to the one used by Sinatra framework. 

 
● Reverse routing defines a relationship between the links and routes, making it possible 

for later changes to routes to be automatically propagated into relevant links. When the 
links are created by using names of existing routes, the appropriate uniform resource 
identifiers (URIs) are automatically created by Laravel. 

 
● Restful controllers provide an optional way for separating the logic behind serving HTTP 

GET and POST requests. 
● Class auto loading provides automated loading of PHP classes without the need for 

manual maintenance of inclusion paths. On-demand loading prevents inclusion of 
unnecessary components, so only the actually used components are loaded. 

 
● View composers serve as customizable logical code units that can be executed when a 

view is loaded. 
 

● Blade templating engine combines one or more templates with a data model to produce 
resulting views, doing that by transpiling the templates into cached PHP code for 
improved performance. Blade also provides a set of its own control structures such as 
conditional statements and loops, which are internally mapped to their PHP 
counterparts. Furthermore, Laravel services may be called from Blade templates, and 
the templating engine itself can be extended with custom directives. 

 

● IoC containers make it possible for new objects to be generated by following the 
inversion of control (IoC) principle, in which the framework calls into the application- or 
task-specific code, with optional instantiating and referencing of new objects as 
singletons. 
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● Migrations provide a version control system for database schemas, making it possible to 
associate changes in the application's codebase and required changes in the database 
layout. As a result, this feature simplifies the deployment and updating of Laravel-based 
applications. 
 

● Database seeding provides a way to populate database tables with selected default data 
that can be used for application testing or be performed as part of the initial application 
setup. 
 

● Unit testing is provided as an integral part of Laravel,which itself contains unit tests that 
detect and prevent regressions in the framework. Unit tests can be run through the 
provided artisan command-line utility. 

 
● Automatic pagination simplifies the task of implementing pagination, replacing the usual 

manual implementation approaches with automated methods integrated into Laravel. 
 

● Form request is a feature of Laravel 5 that serves as the base for form input validation by 
internally binding event listeners, resulting in automated invoking of the form validation 
methods and generation of the actual form. 
 

● Homestead - a Vagrant virtual machine that provides Laravel developers with all the 
tools necessary to develop Laravel straight out of the box, including, Ubuntu, Gulp, 
Bower and other development tools that are useful in developing full scale web 
applications. 

 

● Canvas - a Laravel-powered publishing platform that helps visualize monthly trends, see 
where readers are coming from and what time of day they prefer to read content. 
Features like: Publication Statistics, Distraction-free writing, Unsplash Integration, 
Custom Social Data. 

 

● Lazy Collection - This feature of the PHP framework Laravel 6, primarily enables you to 
deal with heavy loads of data, while keeping the memory usage low. Moreover, when 
you switch from all ( _ to cursor ( ), just one expressive model is moved within the 
memory at a time as cursor ( ) makes use of the LazyCollection instance. 
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Bootstrap (front-end framework) 
Bootstrap is a free and open-source CSS framework directed at responsive, 
mobile-first front-end web development. It contains CSS- and (optionally) 
JavaScript-based design templates for typography, forms, buttons, 
navigation and other interface components. 
 
Bootstrap is the sixth-most-starred project on GitHub, with more than 
135,000 stars, behind freeCodeCamp (almost 307,000 stars) and marginally 
behind Vue.js framework. 
 
Bootstrap is a web framework that focuses on simplifying the development of informative web 
pages (as opposed to web apps). The primary purpose of adding it to a web project is to apply 
Bootstrap's choices of color, size, font and layout to that project. As such, the primary factor is 
whether the developers in charge find those choices to their liking. Once added to a project, 
Bootstrap provides basic style definitions for all HTML elements. The result is a uniform 
appearance for prose, tables and form elements across web browsers. In addition, developers 
can take advantage of CSS classes defined in Bootstrap to further customize the appearance of 
their contents. For example, Bootstrap has provisioned for light- and dark-colored tables, page 
headings, more prominent pull quotes, and text with a highlight. 
 
Bootstrap also comes with several JavaScript components in the form of jQuery plugins. They 
provide additional user interface elements such as dialog boxes, tooltips, and carousels. Each 
Bootstrap component consists of an HTML structure, CSS declarations, and in some cases 
accompanying JavaScript code. They also extend the functionality of some existing interface 
elements, including for example an auto-complete function for input fields. 
 

36 



 
 
The most prominent components of Bootstrap are its layout components, as they affect an 
entire web page. The basic layout component is called "Container", as every other element in 
the page is placed in it. Developers can choose between a fixed-width container and a 
fluid-width container. While the latter always fills the width of the web page, the former uses one 
of the four predefined fixed widths, depending on the size of the screen showing the page: 

● Smaller than 576 pixels 
● 576–768 pixels 
● 768–992 pixels 
● 992–1200 pixels 
● Larger than 1200 pixels 

 
Once a container is in place, other Bootstrap layout components implement a CSS grid layout 
through defining rows and columns. 
 
A precompiled version of Bootstrap is available in the form of one CSS file and three JavaScript 
files that can be readily added to any project. The raw form of Bootstrap, however, enables 
developers to implement further customization and size optimizations. This raw form is modular, 
meaning that the developer can remove unneeded components, apply a theme and modify the 
uncompiled Sass files. 
 

jQuery 
jQuery is a JavaScript library designed to simplify HTML DOM tree traversal and manipulation, 
as well as event handling, CSS animation, and Ajax. It is free, open-source software using the 
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permissive MIT License. As of May 2019, 
jQuery is used by 73% of the 10 million most 
popular websites. Web analysis indicates that it is 
the most widely deployed JavaScript library by a 
large margin, having 3 to 4 times more usage 
than any other JavaScript library. 
 
jQuery's syntax is designed to make it easier to navigate a document, select DOM elements, 
create animations, handle events, and develop Ajax applications. jQuery also provides 
capabilities for developers to create plug-ins on top of the JavaScript library. This enables 
developers to create abstractions for low-level interaction and animation, advanced effects and 
high-level, themeable widgets. The modular approach to the jQuery library allows the creation of 
powerful dynamic web pages and Web applications. 
 
The set of jQuery core features—DOM element selections, traversal and manipulation—enabled 
by its selector engine (named "Sizzle" from v1.3), created a new "programming style", fusing 
algorithms and DOM data structures. This style influenced the architecture of other JavaScript 
frameworks like YUI v3 and Dojo, later stimulating the creation of the standard Selectors API. 
Later, this style has been enhanced with a deeper algorithm-data fusion in an heir of jQuery, the 
D3.js framework. 
 
Microsoft and Nokia bundle jQuery on their platforms Microsoft includes it with Visual Studio for 
use within Microsoft's ASP.NET AJAX and ASP.NET MVC frameworks while Nokia has 
integrated it into the Web Run-Time widget development platform. 

Chart.js 
Chart.js is a community maintained open-source library (it’s available on 
GitHub) that helps you easily visualize data using JavaScript. It’s similar to 
Chartist and Google Charts. It supports 8 different chart types (including 
bars, lines, & pies), and they’re all responsive. In other words, you set up 
your chart once, and Chart.js will do the heavy-lifting for you and make sure 
that it’s always legible (for example by removing some uncritical details if the 
chart gets smaller). 
 
In a gist, this is what you need to do to draw a chart with Chart.js: 

1. Define where on your page to draw the graph. 
2. Define what type of graph you want to draw. 
3. Supply Chart.js with data, labels, and other options. 

 
And you’ll get a beautiful, responsive, graph! Although we won’t dig too deep into changing the 
design of our graph in this tutorial, Chart.js graphs are highly customizable. As a rule, whatever 
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you see you can affect, and although the charts look good without much customization, you’ll 
likely be able to realize all your (or someone else’s) design visions with some extra effort. 

IPython and Jupyter 
The IPython project began in 2001 as Fernando Pérez’s side project to make a better interactive 
Python interpreter. In the subsequent 16 years it has become one of the most important tools in 
the modern Python data stack. While it does not provide any computational or data analytical 
tools by itself, IPython is designed from the ground up to maximize your productivity in both 
interactive computing and software development. It encourages an execute-explore workflow 
instead of the typical edit-compile run workflow of many other programming languages. It also 
provides easy access to your operating system’s shell and filesystem. Since much of data 
analysis coding involves exploration, trial and error, and iteration, IPython can help you get the 
job done faster.  
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In 2014, Fernando and the IPython team announced the Jupyter project, a broader initiative to 
design language-agnostic interactive computing tools. The IPython web notebook became the 
Jupyter notebook, with support now for over 40 programming languages. The IPython system 
can now be used as a kernel (a programming language mode) for using Python with Jupyter.  
 
IPython itself has become a component of the much broader Jupyter open source project, which 
provides a productive environment for interactive and exploratory computing. Its oldest and 
simplest “mode” is as an enhanced Python shell designed to accelerate the writing, testing, and 
debugging of Python code. You can also use the IPython system through the Jupyter Notebook, 
an interactive web-based code “note- book” offering support for dozens of programming 
languages.  
 
The IPython shell and Jupyter notebooks are especially useful for data exploration and 
visualization. The Jupyter notebook system also allows you to author content in Markdown and 
HTML, providing you a means to create rich documents with code and text. Other programming 
languages have also implemented kernels for Jupyter to enable you to use languages other 
than Python in Jupyter.  
 
For me personally, IPython is usually involved with the majority of my Python work, including 
running, debugging, and testing code. 

NumPy 
NumPy, short for Numerical Python, has long been a cornerstone of numerical com- 
puting in Python. It provides the data structures, algorithms, and library glue needed 
for most scientific applications involving numerical data in Python. NumPy contains, 
among other things: 
 

● A fast and efficient multidimensional array object ndarray 
● Functions for performing element-wise computations with arrays or mathemati- 
● cal operations between arrays 
● Tools for reading and writing array-based datasets to disk 
● Linear algebra operations, Fourier transform, and random number generation 
● A mature C API to enable Python extensions and native C or C++ code to access 

NumPy’s data structures and computational facilities 
 
Beyond the fast array-processing capabilities that NumPy adds to Python, one of its 
primary uses in data analysis is as a container for data to be passed between algo- 
rithms and libraries. For numerical data, NumPy arrays are more efficient for storing 
and manipulating data than the other built-in Python data structures. Also, libraries 
written in a lower-level language, such as C or Fortran, can operate on the data stored 
in a NumPy array without copying data into some other memory representation. 
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Thus, many numerical computing tools for Python either assume NumPy arrays as a 
primary data structure or else target seamless interoperability with NumPy 

Pandas 
pandas provides high-level data structures and functions designed to make working 
with structured or tabular data fast, easy, and expressive. Since its emergence in 2010, 
it has helped enable Python to be a powerful and productive data analysis environ- 
ment. The primary objects in pandas that will be used in this study are the ​DataFrame​, 
a tabular, column-oriented data structure with both row and column labels, and the 
Series​, a one-dimensional labeled array object. 
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pandas blends the high-performance, array-computing ideas of NumPy with the flex- 
ible data manipulation capabilities of spreadsheets and relational databases (such as 
SQL). It provides sophisticated indexing functionality to make it easy to reshape, slice 
and dice, perform aggregations, and select subsets of data. Since data manipulation, 
 
preparation, and cleaning is such an important skill in data analysis. 
 
As a bit of background, I started building pandas in early 2008 during my tenure at 
AQR Capital Management, a quantitative investment management firm. At the time, 
I had a distinct set of requirements that were not well addressed by any single tool at 
my disposal: 

●  
●  Data structures with labeled axes supporting automatic or explicit data alignment 
● —this prevents common errors resulting from misaligned data and working with 
● differently indexed data coming from different sources 
●  Integrated time series functionality 
●  The same data structures handle both time series data and non–time series data 
●  Arithmetic operations and reductions that preserve metadata 
●  Flexible handling of missing data 
●  Merge and other relational operations found in popular databases (SQL-based, 
● for example) 

 
I wanted to be able to do all of these things in one place, preferably in a language well 
suited to general-purpose software development. Python was a good candidate lan- 
guage for this, but at that time there was not an integrated set of data structures and 
tools providing this functionality. As a result of having been built initially to solve 
finance and business analytics problems, pandas features especially deep time series 
functionality and tools well suited for working with time-indexed data generated by 
business processes. 
 
For users of the R language for statistical computing, the DataFrame name will be 
familiar, as the object was named after the similar R data.frame object. Unlike 
Python, data frames are built into the R programming language and its standard 
library. As a result, many features found in pandas are typically either part of the R 
core implementation or provided by add-on packages. 
 
The pandas name itself is derived from panel data, an econometrics term for multidi- 
mensional structured datasets, and a play on the phrase Python data analysis itself. 
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System Design 

Agile software development 
Agile software development comprises various approaches to software development under 
which requirements and solutions evolve through the collaborative effort of self-organizing and 
cross-functional teams and their customer(s)/end user(s). It advocates adaptive planning, 
evolutionary development, early delivery, and continual improvement, and it encourages rapid 
and flexible response to change.[further explanation needed] 
 
The term agile (sometimes written Agile) was popularized, in this context, by the Manifesto for 
Agile Software Development. The values and principles espoused in this manifesto were 
derived from and underpin a broad range of software development frameworks, including Scrum 
and Kanban. 
 
While there is much anecdotal evidence that adopting agile practices and values improves the 
agility of software professionals, teams and organizations, some empirical studies have 
disputed that evidence. 
 

The Manifesto for Agile Software Development 

Agile software development values 
Based on their combined experience of developing software and helping others do that, the 
seventeen signatories to the manifesto proclaimed that they value: 

● Individuals and Interactions over processes and tools 
● Working Software over comprehensive documentation 
● Customer Collaboration over contract negotiation 
● Responding to Change over following a plan 

 
That is to say, the items on the left are valued more than the items on the right. 
As Scott Ambler elucidated: 

● Tools and processes are important, but it is more important to have competent people 
working together effectively. 

● Good documentation is useful in helping people to understand how the software is built 
and how to use it, but the main point of development is to create software, not 
documentation. 

● A contract is important but is no substitute for working closely with customers to discover 
what they need. 
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● A project plan is important, but it must not be too rigid to accommodate changes in 
technology or the environment, stakeholders' priorities, and people's understanding of 
the problem and its solution. 
 

Some of the authors formed the Agile Alliance, a non-profit organization that promotes software 
development according to the manifesto's values and principles. Introducing the manifesto on 
behalf of the Agile Alliance, Jim Highsmith said, 
 
The Agile movement is not anti-methodology, in fact many of us want to restore credibility to the 
word methodology. We want to restore a balance. We embrace modeling, but not in order to file 
some diagram in a dusty corporate repository. We embrace documentation, but not hundreds of 
pages of never-maintained and rarely-used tomes. We plan, but recognize the limits of planning 
in a turbulent environment. Those who would brand proponents of XP or SCRUM or any of the 
other Agile Methodologies as "hackers" are ignorant of both the methodologies and the original 
definition of the term hacker. 
— Jim Highsmith, History: The Agile Manifesto 

Agile software development principles 
The Manifesto for Agile Software Development is based on twelve principles: 

1. Customer satisfaction by early and continuous delivery of valuable software. 
2. Welcome changing requirements, even in late development. 
3. Deliver working software frequently (weeks rather than months) 
4. Close, daily cooperation between business people and developers 
5. Projects are built around motivated individuals, who should be trusted 
6. Face-to-face conversation is the best form of communication (co-location) 
7. Working software is the primary measure of progress 
8. Sustainable development, able to maintain a constant pace 
9. Continuous attention to technical excellence and good design 
10. Simplicity—the art of maximizing the amount of work not done—is essential 
11. Best architectures, requirements, and designs emerge from self-organizing teams 
12. Regularly, the team reflects on how to become more effective, and adjusts accordingly 
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System Design Cheatsheet 

Basic Steps 
1. Clarify and agree on the scope of the system 
● User cases (description of sequences of events that, taken together, lead to a system 

doing something useful) 
○ Who is going to use it? 
○ How are they going to use it? 

● Constraints 
○ Mainly identify traffic and data handling constraints at scale. 
○ Scale of the system such as requests per second, requests types, data written 

per second, data read per second) 
○ Special system requirements such as multi-threading, read or write oriented. 

 
2. High level architecture design (Abstract design) 
● Sketch the important components and connections between them, but don't go into 

some details. 
○ Application service layer (serves the requests) 
○ List different services required. 
○ Data Storage layer 
○ eg. Usually a scalable system includes webserver (load balancer), service 

(service partition), database (master/slave database cluster) and caching 
systems. 

 
3. Component Design 
● Component + specific APIs required for each of them. 
● Object oriented design for functionalities. 

○ Map features to modules: One scenario for one module. 
○ Consider the relationships among modules: 

■ Certain functions must have unique instance (Singletons) 
■ Core object can be made up of many other objects (composition). 
■ One object is another object (inheritance) 

● Database schema design. 
 

4. Understanding Bottlenecks 
Perhaps your system needs a load balancer and many machines behind it to handle the 
user requests. * Or maybe the data is so huge that you need to distribute your database 
on multiple machines. What are some of the downsides that occur from doing that? 
Is the database too slow and does it need some in-memory caching? 
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5. Scaling your abstract design 
● Vertical scaling 

○ You scale by adding more power (CPU, RAM) to your existing machine. 
 

● Horizontal scaling 
○ You scale by adding more machines into your pool of resources. 

 
● Caching 

○ Load balancing helps you scale horizontally across an ever-increasing number of 
servers, but caching will enable you to make vastly better use of the resources 
you already have, as well as making otherwise unattainable product 
requirements feasible. 

○ Application caching requires explicit integration in the application code itself. 
Usually it will check if a value is in the cache; if not, retrieve the value from the 
database. 

○ Database caching tends to be "free". When you flip your database on, you're 
going to get some level of default configuration which will provide some degree of 
caching and performance. Those initial settings will be optimized for a generic 
usecase, and by tweaking them to your system's access patterns you can 
generally squeeze a great deal of performance improvement. 

○ In-memory caches are most potent in terms of raw performance. This is because 
they store their entire set of data in memory and accesses to RAM are orders of 
magnitude faster than those to disk. eg. Memcached or Redis. 

○ eg. Precalculating results (e.g. the number of visits from each referring domain 
for the previous day), 

○ eg. Pre-generating expensive indexes (e.g. suggested stories based on a user's 
click history) 

○ eg. Storing copies of frequently accessed data in a faster backend (e.g. 
Memcache instead of PostgreSQL. 

 
● Load balancing 

○ Public servers of a scalable web service are hidden behind a load balancer. This 
load balancer evenly distributes load (requests from your users) onto your 
group/cluster of application servers. 

○ Types: Smart client (hard to get it perfect), Hardware load balancers ($$$ but 
reliable), Software load balancers (hybrid - works for most systems) 
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● Database replication 

○ Database replication is the frequent electronic copying data from a database in 
one computer or server to a database in another so that all users share the same 
level of information. The result is a distributed database in which users can 
access data relevant to their tasks without interfering with the work of others. The 
implementation of database replication for the purpose of eliminating data 
ambiguity or inconsistency among users is known as normalization. 

 
● Database partitioning 

○ Partitioning of relational data usually refers to decomposing your tables either 
row-wise (horizontally) or column-wise (vertically). 

 
● Map-Reduce 

○ For sufficiently small systems you can often get away with adhoc queries on a 
SQL database, but that approach may not scale up trivially once the quantity of 
data stored or write-load requires sharding your database, and will usually 
require dedicated slaves for the purpose of performing these queries (at which 
point, maybe you'd rather use a system designed for analyzing large quantities of 
data, rather than fighting your database). 

○ Adding a map-reduce layer makes it possible to perform data and/or processing 
intensive operations in a reasonable amount of time. You might use it for 
calculating suggested users in a social graph, or for generating analytics reports. 
eg. Hadoop, and maybe Hive or HBase. 

 
● Platform Layer (Services) 

○ Separating the platform and web application allow you to scale the pieces 
independently. If you add a new API, you can add platform servers without 
adding unnecessary capacity for your web application tier. 

○ Adding a platform layer can be a way to reuse your infrastructure for multiple 
products or interfaces (a web application, an API, an iPhone app, etc) without 
writing too much redundant boilerplate code for dealing with caches, databases, 
etc. 
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Key topics for designing a system 
1. Concurrency 

Do you understand threads, deadlock, and starvation? Do you know how to parallelize 
algorithms? Do you understand consistency and coherence? 
 

2. Networking 
Do you roughly understand IPC and TCP/IP? Do you know the difference between 
throughput and latency, and when each is the relevant factor? 
 

3. Abstraction 
You should understand the systems you’re building upon. Do you know roughly how an 
OS, file system, and database work? Do you know about the various levels of caching in 
a modern OS? 
 

4. Real-World Performance 
You should be familiar with the speed of everything your computer can do, including the 
relative performance of RAM, disk, SSD and your network. 
 

5. Estimation 
Estimation, especially in the form of a back-of-the-envelope calculation, is important 
because it helps you narrow down the list of possible solutions to only the ones that are 
feasible. Then you have only a few prototypes or micro-benchmarks to write. 
 

6. Availability & Reliability 
Are you thinking about how things can fail, especially in a distributed environment? Do 
know how to design a system to cope with network failures? Do you understand 
durability? 
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Web App System design considerations: 
● Security (CORS) 
● Using CDN 

○ A content delivery network (CDN) is a system of distributed servers (network) 
that deliver webpages and other Web content to a user based on the geographic 
locations of the user, the origin of the webpage and a content delivery server. 

○ This service is effective in speeding the delivery of content of websites with high 
traffic and websites that have global reach. The closer the CDN server is to the 
user geographically, the faster the content will be delivered to the user. 

○ CDNs also provide protection from large surges in traffic. 
● Full Text Search 

○ Using Sphinx/Lucene/Solr - which achieve fast search responses because, 
instead of searching the text directly, it searches an index instead. 

● Offline support/Progressive enhancement 
○ Service Workers 

● Web Workers 
● Server Side rendering 
● Asynchronous loading of assets (Lazy load items) 
● Minimizing network requests (Http2 + bundling/sprites etc) 
● Developer productivity/Tooling 
● Accessibility 
● Internationalization 
● Responsive design 
● Browser compatibility 

Working Components of Front-end Architecture 
● Code 

○ HTML5/WAI-ARIA 
○ CSS/Sass Code standards and organization 
○ Object-Oriented approach (how do objects break down and get put together) 
○ JS frameworks/organization/performance optimization techniques 
○ Asset Delivery - Front-end Ops 

● Documentation 
○ Onboarding Docs 
○ Styleguide/Pattern Library 
○ Architecture Diagrams (code flow, tool chain) 

● Testing 
○ Performance Testing 
○ Visual Regression 
○ Unit Testing 
○ End-to-End Testing 
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● Process 
○ Git Workflow 
○ Dependency Management (npm, Bundler, Bower) 
○ Build Systems (Grunt/Gulp) 
○ Deploy Process 
○ Continuous Integration (Travis CI, Jenkins) 
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Model–view–controller 
Model–view–controller (usually known as MVC) is a software design pattern commonly used for 
developing user interfaces which divides the related program logic into three interconnected 
elements. This is done to separate internal representations of information from the ways 
information is presented to and accepted from the user. This kind of pattern is used for 
designing the layout of the page. 

 
 
Traditionally used for desktop graphical user interfaces (GUIs), this pattern has become popular 
for designing web applications. Popular programming languages like JavaScript, Python, Ruby, 
PHP, Java, C#, and Swift have MVC frameworks that are used for web or mobile application 
development straight out of the box. 

Model 
The central component of the pattern. It is the application's dynamic data structure, independent 
of the user interface. It directly manages the data, logic and rules of the application. 

View 
Any representation of information such as a chart, diagram or table. Multiple views of the same 
information are possible, such as a bar chart for management and a tabular view for 
accountants. 
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Controller 
Accepts input and converts it to commands for the model or view. 
In addition to dividing the application into these components, the model–view–controller design 
defines the interactions between them. 
 

● The model is responsible for managing the data of the application. It receives user input 
from the controller. 

● The view means presentation of the model in a particular format. 
● The controller responds to the user input and performs interactions on the data model 

objects. The controller receives the input, optionally validates it and then passes the 
input to the model. 

 
As with other software patterns, MVC expresses the "core of the solution" to a problem while 
allowing it to be adapted for each system. Particular MVC designs can vary significantly from the 
traditional description here. 
 

Simultaneous development 
Because MVC decouples the various components of an application, developers are able to work 
in parallel on different components without affecting or blocking one another. For example, a 
team might divide their developers between the front-end and the back-end. The back-end 
developers can design the structure of the data and how the user interacts with it without 
requiring the user interface to be completed. Conversely, the front-end developers are able to 
design and test the layout of the application prior to the data structure being available. 

Code reuse 
The same (or similar) view for one application can be refactored for another application with 
different data because the view is simply handling how the data is being displayed to the user. 
Unfortunately this does not work when that code is also useful for handling user input. For 
example, DOM code (including the application's custom abstractions to it) is useful for both 
graphics display and user input. (Note that, despite the name Document Object Model, the DOM 
is actually not an MVC model, because it is the application's interface to the user). 
To address these problems, MVC (and patterns like it) are often combined with a component 
architecture that provides a set of UI elements. Each UI element is a single higher-level 
component that combines the 3 required MVC components into a single package. By creating 
these higher-level components that are independent of each other, developers are able to reuse 
components quickly and easily in other applications.  
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Data Cleaning and Preparation 
Data cleaning and preparation is the most critical first step in any AI project. As evidence shows, 
most data scientists spend most of their time — up to 70% — on cleaning data. 
 
In this section, we’ll guide you through these initial steps of data cleaning and preprocessing in 
Python, starting from importing the most popular libraries to actual encoding of features. 
 
Data cleansing or data cleaning is the process of detecting and correcting (or removing) corrupt 
or inaccurate records from a record set, table, or database and refers to identifying incomplete, 
incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the 
dirty or coarse data.  

Step 1. Loading the data set 

Importing libraries 
The absolutely first thing you need to do is to import libraries for data preprocessing. There are 
lots of libraries available, but the most popular and important Python libraries for working on 
data are Numpy, Matplotlib, and Pandas. Numpy is the library used for all mathematical things. 
Pandas is the best tool available for importing and managing datasets. Matplotlib 
(Matplotlib.pyplot) is the library to make charts. 
 
To make it easier for future use, you can import these libraries with a shortcut alias: 
 

import​ numpy ​as​ np 
import​ matplotlib.pyplot ​as​ plt 
import​ pandas ​as​ pd 

Loading data into pandas 
Once you downloaded your data set and named it as a .csv file, you need to load it into a 
pandas DataFrame to explore it and perform some basic cleaning tasks removing information 
you don’t need that will make data processing slower. 
Usually, such tasks include: 
 

● Removing the first line: it contains extraneous text instead of the column titles. This text 
prevents the data set from being parsed properly by the pandas library: 

my_dataset = pd.read_csv('data/my_dataset.csv', skiprows=1, 
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low_memory=​False​) 

● Removing columns with text explanations that we won’t need, url columns and other 
unnecessary columns: 

my_dataset = my_dataset.drop(['url'],axis=1) 

● Removing all columns with only one value, or have more than 50% missing values to 
work faster (if your data set is large enough that it will still be meaningful): 

my_dataset = my_dataset.dropna(thresh=half_count,axis=1) 

It’s also a good practice to name the filtered data set differently to keep it separate from the raw 
data. This makes sure you still have the original data in case you need to go back to it. 

Step 2. Exploring the data set 

Understanding the data 
Now you have got your data set up, but you still should spend some time exploring it and 
understanding what feature each column represents. Such manual review of the data set is 
important, to avoid mistakes in the data analysis and the modelling process. 
To make the process easier, you can create a DataFrame with the names of the columns, data 
types, the first row’s values, and description from the data dictionary. 
As you explore the features, you can pay attention to any column that: 

● is formatted poorly, 
● requires more data or a lot of pre-processing to turn into useful a feature, or 
● contains redundant information, 

 
since these things can hurt your analysis if handled incorrectly. 
You should also pay attention to data leakage, which can cause the model to overfit. This is 
because the model will be also learning from features that won’t be available when we’re using 
it to make predictions. We need to be sure our model is trained using only the data it would 
have at the point of a loan application. 

Deciding on a target column 
With a filtered data set explored, you need to create a matrix of dependent variables and a 
vector of independent variables. At first you should decide on the appropriate column to use as 
a target column for modelling based on the question you want to answer. For example, if you 
want to predict the development of cancer, or the chance the credit will be approved, you need 
to find a column with the status of the disease or loan granting ad use it as the target column. 
For example, if the target column is the last one, you can create the matrix of dependent 
variables by typing: 
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X = dataset.iloc[:, :-1].values 

That first colon (:) means that we want to take all the lines in our dataset. : -1 means that we 
want to take all of the columns of data except the last one. The ​.values​ on the end means that 
we want all of the values. 
To have a vector of independent variables with only the data from the last column, you can type 

y = dataset.iloc[:, -1].values 

Step 3. Preparing the Features for Machine Learning 
Finally, it’s time to do the preparatory work to feed the features for ML algorithms. To clean the 
data set, you need to handle missing values and categorical features, because the mathematics 
underlying most machine learning models assumes that the data is numerical and contains no 
missing values. Moreover, the scikit-learn library returns an error if you try to train a model like 
linear regression and logistic regression using data that contain missing or non-numeric values. 

Dealing with Missing Values 
Missing data is perhaps the most common trait of unclean data. These values usually take the 
form of NaN or None. 
here are several causes of missing values: sometimes values are missing because they do not 
exist, or because of improper collection of data or poor data entry. For example, if someone is 
under age, and the question applies to people over 18, then the question will contain a missing 
value. In such cases, it would be wrong to fill in a value for that question. 
There are several ways to fill up missing values: 

● you can remove the lines with the data if you have your data set is big enough and the 
percentage of missing values is high (over 50%, for example); 

● you can fill all null variables with 0 is dealing with numerical values; 
● you can use the ​Imputer​ class from the ​scikit-learn​ library to fill in missing values with the 

data’s (mean, median, most_frequent) 
● you can also decide to fill up missing values with whatever value comes directly after it in 

the same column. 
These decisions depend on the type of data, what you want to do with the data, and the cause 
of values missing. In reality, just because something is popular doesn’t necessarily make it the 
right choice. The most common strategy is to use the mean value, but depending on your data 
you may come up with a totally different approach. 
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Handling categorical data 
Machine learning uses only numeric values (float or int data type). However, data sets often 
contain the object data type than needs to be transformed into numeric. In most cases, 
categorical values are discrete and can be encoded as dummy variables, assigning a number 
for each category. The simplest way is to use One Hot Encoder, specifying the index of the 
column you want to work on: 

from​ sklearn.preprocessing ​import​ OneHotEncoder 
onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray() 

Dealing with inconsistent data entry 
Inconsistency occurs, for example, when there are different unique values in a column which 
are meant to be the same. You can think of different approaches to capitalization, simple 
misprints and inconsistent formats to form an idea. One of the ways to remove data 
inconsistencies is by to remove whitespaces before or after entry names and by converting all 
cases to lower cases. 
If there is a large number of inconsistent unique entries, however, it is impossible to manually 
check for the closest matches. You can use the Fuzzy Wuzzy package to identify which strings 
are most likely to be the same. It takes in two strings and returns a ratio. The closer the ratio is 
to 100, the more likely you will unify the strings. 

Handling Dates and Times 
A specific type of data inconsistency is inconsistent format of dates, such as dd/mm/yy and 
mm/dd/yy in the same columns. Your date values might not be in the right data type, and this 
will not allow you effectively perform manipulations and get insight from it. This time you can use 
the datetime package to fix the type of the date. 

Scaling and Normalization 
Scaling is important if you need to specify that a change in one quantity is not equal to another 
change in another. With the help of scaling you ensure that just because some features are big 
they won’t be used as a main predictor. For example, if you use the age and the salary of a 
person in prediction, some algorithms will pay attention to the salary more because it is bigger, 
which does not make any sense. 
Normalization involves transforming or converting your dataset into a normal distribution. Some 
algorithms like SVM converge far faster on normalized data, so it makes sense to normalize 
your data to get better results. 
There are many ways to perform feature scaling. In a nutshell, we put all of our features into the 
same scale so that none are dominated by another. For example, you can use the 
StandardScaler class from the sklearn.preprocessing package to fit and transform your data set: 
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from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

X_train = sc_X.fit_transform(X_train) 

X_test = sc_X.transform(X_test) 

 

#As you don't need to fit it to your test set, you can just apply 

transformation. 

 

sc_y = StandardScaler() 

y_train = sc_y.fit_transform(y_train) 

Save to CSV 
To be sure that you still have the raw data, it is a good practice to store the final output of each 
section or stage of your workflow in a separate csv file. In this way, you’ll be able to make 
changes in your data processing flow without having to recalculate everything. 
As we did previously, you can store your DataFrame as a .csv using the pandas to_csv() 
function. 

my_dataset.to_csv("processed_data/cleaned_dataset.csv",index=​False​) 

 

Data wrangling 
Data wrangling, sometimes referred to as data munging, is the process of transforming and 
mapping data from one "raw" data form into another format with the intent of making it more 
appropriate and valuable for a variety of downstream purposes such as analytics. A data 
wrangler is a person who performs these transformation operations. 
 
This may include further munging, data visualization, data aggregation, training a statistical 
model, as well as many other potential uses. Data munging as a process typically follows a set 
of general steps which begin with extracting the data in a raw form from the data source, 
"munging" the raw data using algorithms (e.g. sorting) or parsing the data into predefined data 
structures, and finally depositing the resulting content into a data sink for storage and future 
use. 
 
The data transformations are typically applied to distinct entities (e.g. fields, rows, columns, data 
values etc.) within a data set, and could include such actions as extractions, parsing, joining, 
standardizing, augmenting, cleansing, consolidating and filtering to create desired wrangling 
outputs that can be leveraged downstream. 
 
The recipients could be individuals, such as data architects or data scientists who will 
investigate the data further, business users who will consume the data directly in reports, or 
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systems that will further process the data and write it into targets such as data warehouses, 
data lakes or downstream applications. 

Plotting and Visualization 
Data visualization is the discipline of trying to understand data by placing it in a visual context so 
that patterns, trends and correlations that might not otherwise be detected can be exposed. 
Python offers multiple great graphing libraries that come packed with lots of different features. 
No matter if you want to create interactive, live or highly customized plots python has an 
excellent library for you. 
To get a little overview here are a few popular plotting libraries: 

● Matplotlib: low level, provides lots of freedom 
● Pandas Visualization: easy to use interface, built on Matplotlib 
● Seaborn: high-level interface, great default styles 
● ggplot: based on R’s ggplot2, uses Grammar of Graphics 
● Plotly: can create interactive plots 

In this article, we will learn how to create basic plots using Matplotlib, Pandas visualization and 
Seaborn as well as how to use some specific features of each library. This article will focus on 
the syntax and not on interpreting the graphs, which I will cover in another blog post. 
In further articles, I will go over interactive plotting tools like Plotly, which is built on D3 and can 
also be used with JavaScript. 
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Data Aggregation 
Both marketers and agencies who have ever tried to manage marketing campaigns across 
many different platforms like Facebook, Adwords, and more know how overwhelming it can be 
at times to aggregate all the data from several places. 
The entire process of data aggregation can take over 20 hours every week. Luckily, there is a 
solution to this problem. Platforms like improvado are now available to help marketers save time 
and effort. 
Platforms like these automate the data aggregation process, letting you create the reports you 
need to view all of your campaign data in one place, in real time. Let’s take a closer look at what 
data aggregation is, how it can help your company, and what some of the best data aggregation 
platforms are. 

What is Data Aggregation? 
Data aggregation is any process in which data is brought together and conveyed in a summary 
form. It is typically used prior to the performance of a statistical analysis. 
The information drawn from the data aggregation and statistical analysis can then be used to tell 
you all kinds of information about the data you are looking at. 
In marketing, data aggregation usually comes from your marketing campaigns and the different 
channels you use to market to your customers. 
You can aggregate your data from one specific campaign, looking at how it performed over time 
and with particular cohorts. 
Ideally, though, you are aggregating the data from each specific campaign to compare them to 
each other - one grand data aggregation that tells you how your product is being received 
across channels, populations, and cohorts. 
Doing so can take a lot of time and effort. Luckily, there are now tons of software available that 
can do the work for you, so that you aren’t wasting half of your week simply picking through the 
data. 
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Data Aggregation in the Context of Middleware 
 

 
When it comes to middleware for marketing analytics, there are three different activities and 
functions. 
 
For short, we refer to them as ETV (Extract, Transform, Visualize). Together, this is the workflow 
of extracting and preparing data from SaaS applications for analysis. 
 
For each of these three steps there is a software layer, meaning there are companies whose 
sole focus is to help marketers during each of these steps. 

1. Extract - Data extraction layer 
2. Transform - Data preparation layer 
3. Visualize/Analyze - Visualization and analytics layer 

 
Here at Improvado, we believe it’s important to provide marketers the freedom to work with tools 
that allow them to integrate and analyze their data without involving engineers. 
In this article, we are discussing the extraction phase of middleware for analytics - taking all of 
the data that is stored in your many marketing databases and funneling it into one place for 
analysis. 
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Data Visualization 

Pandas Visualization 
Pandas is an open source high-performance, easy-to-use library providing data structures, such 
as dataframes, and data analysis tools like the visualization tools we will use in this article. 
Pandas Visualization makes it really easy to create plots out of a pandas dataframe and series. 
It also has a higher level API than Matplotlib and therefore we need less code for the same 
results. 
Pandas can be installed using either pip or conda. 

pip install pandas 

or 

conda install pandas 
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Scatter Plot 
To create a scatter plot in Pandas we can call ​<dataset>.plot.scatter() ​and pass it two 
arguments, the name of the x-column as well as the name of the y-column. Optionally we can 
also pass it a title. 
 

iris.plot.scatter(x='sepal_length', y='sepal_width', title='Iris Dataset') 

 
 

 
Figure: Scatter Plot 
 
As you can see in the image it is automatically setting the x and y label to the column names. 
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Line Chart 
To create a line-chart in Pandas we can call ​<dataframe>.plot.line(). ​Whilst in Matplotlib 
we needed to loop-through each column we wanted to plot, in Pandas we don’t need to do this 
because it automatically plots all available numeric columns (at least if we don’t specify a 
specific column/s). 
 

iris.drop(['class'], axis=1).plot.line(title='Iris Dataset') 

 
 

 
Figure: Line Chart 
 
If we have more than one feature Pandas automatically creates a legend for us, as can be seen 
in the image above. 
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Histogram 
In Pandas, we can create a Histogram with the ​plot.hist​ method. There aren’t any required 
arguments but we can optionally pass some like the bin size. 
 

wine_reviews['points'].plot.hist() 

 
 

 
Figure: Histogram 
 
It’s also really easy to create multiple histograms. 
 

iris.plot.hist(subplots=​True​, layout=(2,2), figsize=(10, 10), bins=20) 
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Figure 12: Multiple Histograms 
The ​subplots ​argument specifies that we want a separate plot for each feature and the 
layout ​specifies the number of plots per row and column. 
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Bar Chart 
To plot a bar-chart we can use the ​plot.bar()​ method, but before we can call this we need to 
get our data. For this we will first count the occurrences using the ​value_count()​ method and 
then sort the occurrences from smallest to largest using the ​sort_index()​ method. 
 

wine_reviews['points'].value_counts().sort_index().plot.bar() 

 
 

 
Figure: Vertical Bar-Chart 
 
It’s also really simple to make a horizontal bar-chart using the plot.barh() method. 
 

wine_reviews['points'].value_counts().sort_index().plot.barh() 
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Figure: Horizontal Bar-Chart 
 
We can also plot other data then the number of occurrences. 

wine_reviews.groupby("country").price.mean().sort_values(ascending=​False​)[:
5].plot.bar() 

 
 

 
Figure: Countries with the most expensive wine(on average) 
 
In the example above we grouped the data by country and then took the mean of the wine 
prices, ordered it, and plotted the 5 countries with the highest average wine price. 
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Time series 
A time series is a series of data points indexed (or listed or graphed) in time order. Most 
commonly, a time series is a sequence taken at successive equally spaced points in time. Thus 
it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, 
counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. 
 

 
 
Time series are very frequently plotted via line charts. Time series are used in statistics, signal 
processing, pattern recognition, econometrics, mathematical finance, weather forecasting, 
earthquake prediction, electroencephalography, control engineering, astronomy, 
communications engineering, and largely in any domain of applied science and engineering 
which involves temporal measurements. 
 
Time series analysis comprises methods for analyzing time series data in order to extract 
meaningful statistics and other characteristics of the data. Time series forecasting is the use of 
a model to predict future values based on previously observed values. While regression 
analysis is often employed in such a way as to test theories that the current values of one or 
more independent time series affect the current value of another time series, this type of 
analysis of time series is not called "time series analysis", which focuses on comparing values of 
a single time series or multiple dependent time series at different points in time. Interrupted time 
series analysis is the analysis of interventions on a single time series. 
 
Time series data have a natural temporal ordering. This makes time series analysis distinct from 
cross-sectional studies, in which there is no natural ordering of the observations (e.g. explaining 
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people's wages by reference to their respective education levels, where the individuals' data 
could be entered in any order). Time series analysis is also distinct from spatial data analysis 
where the observations typically relate to geographical locations (e.g. accounting for house 
prices by the location as well as the intrinsic characteristics of the houses). A stochastic model 
for a time series will generally reflect the fact that observations close together in time will be 
more closely related than observations further apart. In addition, time series models will often 
make use of the natural one-way ordering of time so that values for a given period will be 
expressed as deriving in some way from past values, rather than from future values (see time 
reversibility.) 
 
Time series analysis can be applied to real-valued, continuous data, discrete numeric data, or 
discrete symbolic data (i.e. sequences of characters, such as letters and words in the English 
language). 
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Forecasting  
Forecasting has fascinated people for thousands of years, sometimes being considered a sign 
of divine inspiration, and sometimes being seen as a criminal activity.  
 
One hundred years later, in ancient Babylon, forecasters would foretell the future based on the 
distribution of maggots in a rotten sheep’s liver. By 300 BC, people wanting forecasts would 
journey to Delphi in Greece to consult the Oracle, who would provide her predictions while 
intoxicated by ethylene vapours. Forecasters had a tougher time under the emperor 
Constantine, who issued a decree in AD357 forbidding anyone “to consult a soothsayer, a 
mathematician, or a forecaster “May curiosity to foretell the future be silenced forever.” A similar 
ban on forecasting occurred in England in 1736 when it became an offence to defraud by 
charging money for predictions. The punishment was three months’ imprisonment with hard 
labour! 
 
The varying fortunes of forecasters arise because good forecasts can seem almost magical, 
while bad forecasts may be dangerous. Consider the following famous predictions about 
computing. 
 
I think there is a world market for maybe five computers. (Chairman of IBM, 1943) 
Computers in the future may weigh no more than 1.5 tons. (Popular Mechanics, 1949) 
There is no reason anyone would want a computer in their home. (President, DEC, 1977) 
The last of these was made only three years before IBM produced the first personal computer. 
Not surprisingly, you can no longer buy a DEC computer. Forecasting is obviously a difficult 
activity, and businesses that do it well have a big advantage over those whose forecasts fail. 
 
 

What can be forecast? 
Forecasting is required in many situations: deciding whether to build another power generation 
plant in the next five years requires forecasts of future demand; scheduling staff in a call centre 
next week requires forecasts of call volumes; stocking an inventory requires forecasts of stock 
requirements. Forecasts can be required several years in advance (for the case of capital 
investments), or only a few minutes beforehand (for telecommunication routing). Whatever the 
circumstances or time horizons involved, forecasting is an important aid to effective and efficient 
planning. 
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Some things are easier to forecast than others. The time of the sunrise tomorrow morning can 
be forecast precisely. On the other hand, tomorrow’s lotto numbers cannot be forecast with any 
accuracy. The predictability of an event or a quantity depends on several factors including: 

1. how well we understand the factors that contribute to it; 
2. how much data is available; 
3. whether the forecasts can affect the thing we are trying to forecast. 

 
For example, forecasts of electricity demand can be highly accurate because all three 
conditions are usually satisfied. We have a good idea of the contributing factors: electricity 
demand is driven largely by temperatures, with smaller effects for calendar variation such as 
holidays, and economic conditions. Provided there is a sufficient history of data on electricity 
demand and weather conditions, and we have the skills to develop a good model linking 
electricity demand and the key driver variables, the forecasts can be remarkably accurate. 
 
On the other hand, when forecasting currency exchange rates, only one of the conditions is 
satisfied: there is plenty of available data. However, we have a limited understanding of the 
factors that affect exchange rates, and forecasts of the exchange rate have a direct effect on the 
rates themselves. If there are well-publicised forecasts that the exchange rate will increase, then 
people will immediately adjust the price they are willing to pay and so the forecasts are 
self-fulfilling. In a sense, the exchange rates become their own forecasts. This is an example of 
the “efficient market hypothesis”. Consequently, forecasting whether the exchange rate will rise 
or fall tomorrow is about as predictable as forecasting whether a tossed coin will come down as 
a head or a tail. In both situations, you will be correct about 50% of the time, whatever you 
forecast. In situations like this, forecasters need to be aware of their own limitations, and not 
claim more than is possible. 
 
Often in forecasting, a key step is knowing when something can be forecast accurately, and 
when forecasts will be no better than tossing a coin. Good forecasts capture the genuine 
patterns and relationships which exist in the historical data, but do not replicate past events that 
will not occur again. 
 
Many people wrongly assume that forecasts are not possible in a changing environment. Every 
environment is changing, and a good forecasting model captures the way in which things are 
changing. Forecasts rarely assume that the environment is unchanging. What is normally 
assumed is that the way in which the environment is changing will continue into the future. That 
is, a highly volatile environment will continue to be highly volatile; a business with fluctuating 
sales will continue to have fluctuating sales; and an economy that has gone through booms and 
busts will continue to go through booms and busts. A forecasting model is intended to capture 
the way things move, not just where things are. As Abraham Lincoln said, “If we could first know 
where we are and whither we are tending, we could better judge what to do and how to do it”. 
Forecasting situations vary widely in their time horizons, factors determining actual outcomes, 
types of data patterns, and many other aspects. Forecasting methods can be simple, such as 
using the most recent observation as a forecast (which is called the naïve method), or highly 
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complex, such as neural nets and econometric systems of simultaneous equations. Sometimes, 
there will be no data available at all. For example, we may wish to forecast the sales of a new 
product in its first year, but there are obviously no data to work with. In situations like this, we 
use judgmental forecasting. The choice of method depends on what data are available and the 
predictability of the quantity to be forecast. 

Forecasting, planning and goals  
Fore​casting is a common statistical task in business, where it helps to inform decisions about 

the scheduling of production, transportation and personnel, and provides a guide to long-term 

strategic planning. However, business forecasting is often done poorly, and is frequently 

confused with planning and goals. They are three different things. 

Forecasting 
is about predicting the future as accurately as possible, given all of the information 
available, including historical data and knowledge of any future events that might impact 
the forecasts. 
 
Goals 
are what you would like to have happen. Goals should be linked to forecasts and plans, 
but this does not always occur. Too often, goals are set without any plan for how to 
achieve them, and no forecasts for whether they are realistic. 
 
Planning 
is a response to forecasts and goals. Planning involves determining the appropriate 
actions that are required to make your forecasts match your goals. 
 
Forecasting should be an integral part of the decision-making activities of management, 
as it can play an important role in many areas of a company. Modern organisations 
require short-term, medium-term and long-term forecasts, depending on the specific 
application. 
 
Short-term forecasts 
are needed for the scheduling of personnel, production and transportation. As part of the 
scheduling process, forecasts of demand are often also required. 
Medium-term forecasts 
are needed to determine future resource requirements, in order to purchase raw 
materials, hire personnel, or buy machinery and equipment. 
 
Long-term forecasts 
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are used in strategic planning. Such decisions must take account of market 
opportunities, environmental factors and internal resources. 
 

An organisation needs to develop a forecasting system that involves several approaches to 
predicting uncertain events. Such forecasting systems require the development of expertise in 
identifying forecasting problems, applying a range of forecasting methods, selecting appropriate 
methods for each problem, and evaluating and refining forecasting methods over time. It is also 
important to have strong organisational support for the use of formal forecasting methods if they 
are to be used successfully. 
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Time series forecasting 
Examples of time series data include: 

● Daily IBM stock prices 
● Monthly rainfall 
● Quarterly sales results for Amazon 
● Annual Google profits 

 
Anything that is observed sequentially over time is a time series. In this study, we will only 
consider time series that are observed at regular intervals of time (e.g., hourly, daily, weekly, 
monthly, quarterly, annually). Irregularly spaced time series can also occur, but are beyond the 
scope of this study. 
 
When forecasting time series data, the aim is to estimate how the sequence of observations will 
continue into the future. Next figure  shows the quarterly Australian beer production from 1992 
to the second quarter of 2010. 
 

 
 
The blue lines show forecasts for the next two years. Notice how the forecasts have captured 
the seasonal pattern seen in the historical data and replicated it for the next two years. The dark 
shaded region shows 80% prediction intervals. That is, each future value is expected to lie in 
the dark shaded region with a probability of 80%. The light shaded region shows 95% prediction 
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intervals. These prediction intervals are a useful way of displaying the uncertainty in forecasts. 
In this case the forecasts are expected to be accurate, and hence the prediction intervals are 
quite narrow. 
 
The simplest time series forecasting methods use only information on the variable to be 
forecast, and make no attempt to discover the factors that affect its behaviour. Therefore they 
will extrapolate trend and seasonal patterns, but they ignore all other information such as 
marketing initiatives, competitor activity, changes in economic conditions, and so on. 
Time series models used for forecasting include decomposition models, exponential smoothing 
models and ARIMA models. 
 

Predictor variables and time series forecasting 

Predictor variables are often useful in time series forecasting. For example, suppose we wish to 
forecast the hourly electricity demand (ED) of a hot region during the summer period. A model 
with predictor variables might be of the form 

 
 
The relationship is not exact — there will always be changes in electricity demand that cannot 
be accounted for by the predictor variables. The “error” term on the right allows for random 
variation and the effects of relevant variables that are not included in the model. We call this an 
explanatory model because it helps explain what causes the variation in electricity demand. 
 
Because the electricity demand data form a time series, we could also use a time series model 
for forecasting. In this case, a suitable time series forecasting equation is of the form 
 

 
where t is the present hour, t+1 is the next hour, t−1 is the previous hour, t−2 
 is two hours ago, and so on. Here, prediction of the future is based on past values of a variable, 
but not on external variables which may affect the system. Again, the “error” term on the right 
allows for random variation and the effects of relevant variables that are not included in the 
model. 
 
There is also a third type of model which combines the features of the above two models. For 
example, it might be given by 
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These types of “mixed models” have been given various names in different disciplines. They are 
known as dynamic regression models, panel data models, longitudinal models, transfer function 
models, and linear system models (assuming that f is linear).  
 
An explanatory model is useful because it incorporates information about other variables, rather 
than only historical values of the variable to be forecast. However, there are several reasons a 
forecaster might select a time series model rather than an explanatory or mixed model. First, the 
system may not be understood, and even if it was understood it may be extremely difficult to 
measure the relationships that are assumed to govern its behaviour. Second, it is necessary to 
know or forecast the future values of the various predictors in order to be able to forecast the 
variable of interest, and this may be too difficult. Third, the main concern may be only to predict 
what will happen, not to know why it happens. Finally, the time series model may give more 
accurate forecasts than an explanatory or mixed model. 
 
The model to be used in forecasting depends on the resources and data available, the accuracy 
of the competing models, and the way in which the forecasting model is to be used. 
 

Some case studies 
The following four cases are from our consulting practice and demonstrate different types of 
forecasting situations and the associated problems that often arise. 

Case 1 
The client was a large company manufacturing disposable tableware such as napkins and 
paper plates. They needed forecasts of each of hundreds of items every month. The time series 
data showed a range of patterns, some with trends, some seasonal, and some with neither. At 
the time, they were using their own software, written in-house, but it often produced forecasts 
that did not seem sensible. The methods that were being used were the following: 

1. average of the last 12 months data; 
2. average of the last 6 months data; 
3. prediction from a straight line regression over the last 12 months; 
4. prediction from a straight line regression over the last 6 months; 
5. prediction obtained by a straight line through the last observation with slope equal to the 

average slope of the lines connecting last year’s and this year’s values; 
6. prediction obtained by a straight line through the last observation with slope equal to the 

average slope of the lines connecting last year’s and this year’s values, where the 
average is taken only over the last 6 months. 
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They required us to tell them what was going wrong and to modify the software to provide more 
accurate forecasts. The software was written in COBOL, making it difficult to do any 
sophisticated numerical computation. 

Case 2 
In this case, the client was the Australian federal government, who needed to forecast the 
annual budget for the Pharmaceutical Benefit Scheme (PBS). The PBS provides a subsidy for 
many pharmaceutical products sold in Australia, and the expenditure depends on what people 
purchase during the year. The total expenditure was around A$7 billion in 2009, and had been 
underestimated by nearly $1 billion in each of the two years before we were asked to assist in 
developing a more accurate forecasting approach. 
 
In order to forecast the total expenditure, it is necessary to forecast the sales volumes of 
hundreds of groups of pharmaceutical products using monthly data. Almost all of the groups 
have trends and seasonal patterns. The sales volumes for many groups have sudden jumps up 
or down due to changes in what drugs are subsidised. The expenditures for many groups also 
have sudden changes due to cheaper competitor drugs becoming available. 
 
Thus we needed to find a forecasting method that allowed for trend and seasonality if they were 
present, and at the same time was robust to sudden changes in the underlying patterns. It also 
needed to be able to be applied automatically to a large number of time series. 

Case 3 
A large car fleet company asked us to help them forecast vehicle re-sale values. They purchase 
new vehicles, lease them out for three years, and then sell them. Better forecasts of vehicle 
sales values would mean better control of profits; understanding what affects resale values may 
allow leasing and sales policies to be developed in order to maximise profits. 
 
At the time, the resale values were being forecast by a group of specialists. Unfortunately, they 
saw any statistical model as a threat to their jobs, and were uncooperative in providing 
information. Nevertheless, the company provided a large amount of data on previous vehicles 
and their eventual resale values. 

Case 4 
In this project, we needed to develop a model for forecasting weekly air passenger traffic on 
major domestic routes for one of Australia’s leading airlines. The company required forecasts of 
passenger numbers for each major domestic route and for each class of passenger (economy 
class, business class and first class). The company provided weekly traffic data from the 
previous six years. 
 
Air passenger numbers are affected by school holidays, major sporting events, advertising 
campaigns, competition behaviour, etc. School holidays often do not coincide in different 
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Australian cities, and sporting events sometimes move from one city to another. During the 
period of the historical data, there was a major pilots’ strike during which there was no traffic for 
several months. A new cut-price airline also launched and folded. Towards the end of the 
historical data, the airline had trialled a redistribution of some economy class seats to business 
class, and some business class seats to first class. After several months, however, the seat 
classifications reverted to the original distribution. 
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The basic steps in a forecasting task 
A forecasting task usually involves five basic steps. 

Step 1: Problem definition. 
Often this is the most difficult part of forecasting. Defining the problem carefully requires an 
understanding of the way the forecasts will be used, who requires the forecasts, and how the 
forecasting function fits within the organisation requiring the forecasts. A forecaster needs to 
spend time talking to everyone who will be involved in collecting data, maintaining databases, 
and using the forecasts for future planning. 

Step 2: Gathering information. 
There are always at least two kinds of information required: (a) statistical data, and (b) the 
accumulated expertise of the people who collect the data and use the forecasts. Often, it will be 
difficult to obtain enough historical data to be able to fit a good statistical model. Occasionally, 
old data will be less useful due to structural changes in the system being forecast; then we may 
choose to use only the most recent data. However, remember that good statistical models will 
handle evolutionary changes in the system; don’t throw away good data unnecessarily. 

Step 3: Preliminary (exploratory) analysis. 
Always start by graphing the data. Are there consistent patterns? Is there a significant trend? Is 
seasonality important? Is there evidence of the presence of business cycles? Are there any 
outliers in the data that need to be explained by those with expert knowledge? How strong are 
the relationships among the variables available for analysis? Various tools have been 
developed to help with this analysis.  

Step 4: Choosing and fitting models. 
The best model to use depends on the availability of historical data, the strength of relationships 
between the forecast variable and any explanatory variables, and the way in which the forecasts 
are to be used. It is common to compare two or three potential models. Each model is itself an 
artificial construct that is based on a set of assumptions (explicit and implicit) and usually 
involves one or more parameters which must be estimated using the known historical data. We 
will discuss regression models , exponential smoothing methods , Box-Jenkins ARIMA models, 
Dynamic regression models , Hierarchical forecasting , and several advanced methods 
including neural networks and vector autoregression. 
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Step 5: Using and evaluating a forecasting model. 
Once a model has been selected and its parameters estimated, the model is used to make 
forecasts. The performance of the model can only be properly evaluated after the data for the 
forecast period have become available. A number of methods have been developed to help in 
assessing the accuracy of forecasts. There are also organisational issues in using and acting on 
the forecasts. When using a forecasting model in practice, numerous practical issues arise such 
as how to handle missing values and outliers, or how to deal with short time series.  
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The statistical forecasting perspective 
The thing we are trying to forecast is unknown (or we would not be forecasting it), and so we 
can think of it as a random variable. For example, the total sales for next month could take a 
range of possible values, and until we add up the actual sales at the end of the month, we don’t 
know what the value will be. So until we know the sales for next month, it is a random quantity. 
 
Because next month is relatively close, we usually have a good idea what the likely sales values 
could be. On the other hand, if we are forecasting the sales for the same month next year, the 
possible values it could take are much more variable. In most forecasting situations, the 
variation associated with the thing we are forecasting will shrink as the event approaches. In 
other words, the further ahead we forecast, the more uncertain we are. 
 
We can imagine many possible futures, each yielding a different value for the thing we wish to 
forecast. Plotted in black in Figure 1.2 are the total international visitors to Australia from 1980 
to 2015. Also shown are ten possible futures from 2016–2025. 
 

 
When we obtain a forecast, we are estimating the middle of the range of possible values the 
random variable could take. Often, a forecast is accompanied by a prediction interval giving a 
range of values the random variable could take with relatively high probability. For example, a 
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95% prediction interval contains a range of values which should include the actual future value 
with probability 95%. 
 
Instead of plotting individual possible futures as shown in the next figure, we usually show these 
prediction intervals instead. The plot below shows 80% and 95% intervals for the future 
Australian international visitors. The blue line is the average of the possible future values, which 
we call the point forecasts. 
 

 
We will use the subscript t for time. For example, yt will denote the observation at time t. 
Suppose we denote all the information we have observed as I and we want to forecast yt. We 
then write yt|I meaning “the random variable Yt given what we know in I”. The set of values that 
this random variable could take, along with their relative probabilities, is known as the 
“probability distribution” of  yt|I. In forecasting, we call this the forecast distribution. 
 
When we talk about the “forecast”, we usually mean the average value of the forecast 
distribution, and we put a “hat” over  Y to show this. Thus, we write the forecast of Yt As y^t, 
meaning the average of the possible values that yt could take given everything we know. 
Occasionally, we will use y^t to refer to the median (or middle value) of the forecast distribution 
instead.  
 
It is often useful to specify exactly what information we have used in calculating the forecast. 
Then we will write, for example, y^t|t−1  to mean the forecast of yt taking account of all previous 
observations (y1,…,yt−1). Similarly, y^T+h|T means the forecast of yT+h taking account of 
y1,…,yT (i.e., an h-step forecast taking account of all observations up to time T). 
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Some simple forecasting methods 
Some forecasting methods are extremely simple and surprisingly effective. We will use the 
following four forecasting methods as benchmarks throughout this study. 

Average method 
Here, the forecasts of all future values are equal to the average (or “mean”) of the historical 
data. If we let the historical data be denoted by  y1,…,yT , then we can write the forecasts as 
 

 
 
The notation  y^T+h|T is a short-hand for the estimate of  yT+h based on the data  y1,…,yT. 
 

meanf(y, h) 

# y contains the time series 

# h is the forecast horizon 

 

Naïve method 
For naïve forecasts, we simply set all forecasts to be the value of the last observation. That is, 

 
 
This method works remarkably well for many economic and financial time series. 

naive(y, h) 

rwf(y, h) ​# Equivalent alternative 

 

 
Because a naïve forecast is optimal when data follow a random walk (see 
Section 8.1), these are also called ​random walk forecasts​. 
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Seasonal naïve method 
A similar method is useful for highly seasonal data. In this case, we set each forecast to be 
equal to the last observed value from the same season of the year (e.g., the same month of the 
previous year). Formally, the forecast for time T+h is written as 

 
 
where m= the seasonal period, and k is the integer part of  (h−1)/m 
 (i.e., the number of complete years in the forecast period prior to time T+h). This looks more 
complicated than it really is. For example, with monthly data, the forecast for all future February 
values is equal to the last observed February value. With quarterly data, the forecast of all future 
Q2 values is equal to the last observed Q2 value (where Q2 means the second quarter). Similar 
rules apply for other months and quarters, and for other seasonal periods. 
 

snaive(y, h) 

 

Drift method 
A variation on the naïve method is to allow the forecasts to increase or decrease over time, 
where the amount of change over time (called the drift) is set to be the average change seen in 
the historical data. Thus the forecast for time T+h  is given by 

 
This is equivalent to drawing a line between the first and last observations, and extrapolating it 
into the future. 
 

rwf(y, h, drift=TRUE) 
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Examples of using Average method, Naïve method, 
Drift method 
The next Figure shows the first three methods applied to the quarterly beer production data. 
 

# Set training data from 1992 to 2007 

beer2 <- window(ausbeer,start=1992,end=c(2007,4)) 

# Plot some forecasts 

autoplot(beer2) + 

  autolayer(meanf(beer2, h=11), 

    series="Mean", PI=FALSE) + 

  autolayer(naive(beer2, h=11), 

    series="Naïve", PI=FALSE) + 

  autolayer(snaive(beer2, h=11), 

    series="Seasonal naïve", PI=FALSE) + 

  ggtitle("Forecasts for quarterly beer production") + 

  xlab("Year") + ylab("Megalitres") + 

  guides(colour=guide_legend(title="Forecast")) 

 

 

 
In Figure, the non-seasonal methods are applied to a series of 200 days of the Google daily 
closing stock price. 
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autoplot(goog200) + 

  autolayer(meanf(goog200, h=40), 

    series="Mean", PI=FALSE) + 

  autolayer(rwf(goog200, h=40), 

    series="Naïve", PI=FALSE) + 

  autolayer(rwf(goog200, drift=TRUE, h=40), 

    series="Drift", PI=FALSE) + 

  ggtitle("Google stock (daily ending 6 Dec 2013)") + 

  xlab("Day") + ylab("Closing Price (US$)") + 

  guides(colour=guide_legend(title="Forecast")) 

 

 
 

 
 
Sometimes one of these simple methods will be the best forecasting method available; but in 
many cases, these methods will serve as benchmarks rather than the method of choice. That is, 
any forecasting methods we develop will be compared to these simple methods to ensure that 
the new method is better than these simple alternatives. If not, the new method is not worth 
considering. 
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Neural network models in time forecasting  
Artificial neural networks are forecasting methods that are based on simple mathematical 
models of the brain. They allow complex nonlinear relationships between the response variable 
and its predictors. 
 

Neural network architecture 
A neural network can be thought of as a network of “neurons” which are organised in layers. 
The predictors (or inputs) form the bottom layer, and the forecasts (or outputs) form the top 
layer. There may also be intermediate layers containing “hidden neurons”. 
 
The simplest networks contain no hidden layers and are equivalent to linear regressions. Next 
Figure shows the neural network version of a linear regression with four predictors. The 
coefficients attached to these predictors are called “weights”. The forecasts are obtained by a 
linear combination of the inputs. The weights are selected in the neural network framework 
using a “learning algorithm” that minimises a “cost function” such as the MSE. Of course, in this 
simple example, we can use linear regression which is a much more efficient method of training 
the model. 
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Once we add an intermediate layer with hidden neurons, the neural network becomes 
non-linear. A simple example is shown in next Figure. 
 

 
 
This is known as a multilayer feed-forward network, where each layer of nodes receives inputs 
from the previous layers. The outputs of the nodes in one layer are inputs to the next layer. The 
inputs to each node are combined using a weighted linear combination. The result is then 
modified by a nonlinear function before being output. For example, the inputs into hidden 
neuron j 
 in last Figure are combined linearly to give 
 

 
In the hidden layer, this is then modified using a nonlinear function such as a sigmoid, 
 

 
to give the input for the next layer. This tends to reduce the effect of extreme input values, thus 
making the network somewhat robust to outliers. 
 
The parameters b1,b2,b3 and  w1,1,…,w4,3 are “learned” from the data. The values of the 
weights are often restricted to prevent them from becoming too large. The parameter that 
restricts the weights is known as the “decay parameter”, and is often set to be equal to 0.1. 
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The weights take random values to begin with, and these are then updated using the observed 
data. Consequently, there is an element of randomness in the predictions produced by a neural 
network. Therefore, the network is usually trained several times using different random starting 
points, and the results are averaged. 
 
The number of hidden layers, and the number of nodes in each hidden layer, must be specified 
in advance.  
 

Neural network autoregression 
With time series data, lagged values of the time series can be used as inputs to a neural 
network, just as we used lagged values in a linear autoregression model. We call this a neural 
network autoregression or NNAR model. 
 
In this stuyd, we only consider feed-forward networks with one hidden layer, and we use the 
notation NNAR(p,k) to indicate there are p lagged inputs and k nodes in the hidden layer. For 
example, a NNAR(9,5) model is a neural network with the last nine observations 
(yt−1,yt−2,…,yt−9) used as inputs for forecasting the output yt, and with five neurons in the 
hidden layer. A NNAR(p,0) model is equivalent to an ARIMA(p,0,0) model, but without the 
restrictions on the parameters to ensure stationarity. 
 
With seasonal data, it is useful to also add the last observed values from the same season as 
inputs. For example, an NNAR(3,1,2) 12 model has inputs yt−1, yt−2, yt−3 and  yt−12, and two 
neurons in the hidden layer. More generally, an NNAR(p,P,k)m model has inputs  
 
(yt−1,yt−2,…,yt−p,yt−m,yt−2m,yt−Pm) and k neurons in the hidden layer. A NNAR(p,P,0)m 
model is equivalent to an ARIMA(p,0,0)(P,0,0)m model but without the restrictions on the 
parameters that ensure stationarity. 
 
The ​nnetar()​ function fits an NNAR(p,P,k)m model. If the values of p and P are not specified, 
they are selected automatically. For non-seasonal time series, the default is the optimal number 
of lags (according to the AIC) for a linear AR (p) model. For seasonal time series, the default 
values are P=1 and p is chosen from the optimal linear model fitted to the seasonally adjusted 
data. If k is not specified, it is set to k=(p+P+1)/2 (rounded to the nearest integer). 
 
When it comes to forecasting, the network is applied iteratively. For forecasting one step ahead, 
we simply use the available historical inputs. For forecasting two steps ahead, we use the 
one-step forecast as an input, along with the historical data. This process proceeds until we 
have computed all the required forecasts. 
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Example of Time forecasting with Neural network: 
sunspots 
The surface of the sun contains magnetic regions that appear as dark spots. These affect the 
propagation of radio waves, and so telecommunication companies like to predict sunspot 
activity in order to plan for any future difficulties. Sunspots follow a cycle of length between 9 
and 14 years. In next Figure forecasts from an NNAR(10,6) are shown for the next 30 years. We 
have set a Box-Cox transformation with lambda=0 to ensure the forecasts stay positive. 
 

fit <- nnetar(sunspotarea, lambda=0) 

autoplot(forecast(fit,h=30)) 

 

 
Figure: Forecasts from a neural network with ten lagged inputs and one hidden layer containing 
six neurons. 
 

 

Here, the last 10 observations are used as predictors, and there are 6 neurons in the hidden 
layer. The cyclicity in the data has been modelled well. We can also see the asymmetry of the 
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cycles has been captured by the model, where the increasing part of the cycle is steeper than 
the decreasing part of the cycle. This is one difference between a NNAR model and a linear AR 
model — while linear AR models can model cyclicity, the modelled cycles are always symmetric. 
 

Prediction intervals 
Unlike most of the methods considered in this study, neural networks are not based on a 
well-defined stochastic model, and so it is not straightforward to derive prediction intervals for 
the resultant forecasts. However, we can still compute prediction intervals using simulation 
where future sample paths are generated using bootstrapped residuals (as described in Section 
3.5). 
 
The neural network fitted to the sunspot data can be written as 
 

 
 
where yt−1=(yt−1,yt−2,…,yt−10)′ is a vector containing lagged values of the series, and f is a 
neural network with 6 hidden nodes in a single layer. The error series  {εt} is assumed to be 
homoscedastic (and possibly also normally distributed). 
 
We can simulate future sample paths of this model iteratively, by randomly generating a value 
for εt, either from a normal distribution, or by resampling from the historical values. So if 
εT+1∗is a random draw from the distribution of errors at time  T+1, then 
 

 
 
is one possible draw from the forecast distribution for yT+1. Setting yT+1∗=(yT+1∗,yT,…,yT−6)′, 
we can then repeat the process to get 
 

 
 
In this way, we can iteratively simulate a future sample path. By repeatedly simulating sample 
paths, we build up knowledge of the distribution for all future values based on the fitted neural 
network. 
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Here is a simulation of 9 possible future sample paths for the sunspot data. Each sample path 
covers the next 30 years after the observed data. 
 

sim <- ts(matrix(0, nrow=30L, ncol=9L), 

  start=end(sunspotarea)[1L]+1L) 

for​(i ​in​ seq(9)) 
  sim[,i] <- simulate(fit, nsim=30L) 

autoplot(sunspotarea) + autolayer(sim) 

 

Figure: Future sample paths for the annual sunspot data. 
 

 
If we do this a few hundred or thousand times, we can get a good picture of the forecast 
distributions. This is how the forecast() function produces prediction intervals for NNAR models: 

fcast <- forecast(fit, PI=TRUE, h=30) 

autoplot(fcast) 
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Figure: Forecasts with prediction intervals for the annual sunspot data. Prediction intervals are 
computed using simulated future sample paths. 
 
Because it is a little slow, PI=FALSE is the default, so prediction intervals are not computed 
unless requested. The npaths argument in forecast() controls how many simulations are done 
(default 1000). By default, the errors are drawn from a normal distribution. The bootstrap 
argument allows the errors to be “bootstrapped” (i.e., randomly drawn from the historical errors). 
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Amazon Web Services (AWS) 
Amazon Web Services (AWS) is a subsidiary of Amazon 
that provides on-demand cloud computing platforms and 
APIs to individuals, companies, and governments, on a 
metered pay-as-you-go basis. In aggregate, these cloud 
computing web services provide a set of primitive abstract 
technical infrastructure and distributed computing building 
blocks and tools. One of these services is Amazon Elastic 
Compute Cloud, which allows users to have at their 
disposal a virtual cluster of computers, available all the time, through the Internet. AWS's 
version of virtual computers emulate most of the attributes of a real computer, including 
hardware central processing units (CPUs) and graphics processing units (GPUs) for processing; 
local/RAM memory; hard-disk/SSD storage; a choice of operating systems; networking; and 
pre-loaded application software such as web servers, databases, and customer relationship 
management (CRM). 
 
The AWS technology is implemented at server farms throughout the world, and maintained by 
the Amazon subsidiary. Fees are based on a combination of usage (known as a 
"Pay-as-you-go" model), the hardware/OS/software/networking features chosen by the 
subscriber, required availability, redundancy, security, and service options. Subscribers can pay 
for a single virtual AWS computer, a dedicated physical computer, or clusters of either. As part 
of the subscription agreement, Amazon provides security for subscribers' system. AWS 
operates from many global geographical regions including 6 in North America. 
 
In 2020, AWS comprised more than 212 services spanning a wide range including computing, 
storage, networking, database, analytics, application services, deployment, management, 
mobile, developer tools, and tools for the Internet of Things. The most popular include Amazon 
Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (Amazon S3). Most services 
are not exposed directly to end users, but instead offer functionality through APIs for developers 
to use in their applications. Amazon Web Services' offerings are accessed over HTTP, using the 
REST architectural style and SOAP protocol for older APIs and exclusively JSON for newer 
ones. 
 
Amazon markets AWS to subscribers as a way of obtaining large scale computing capacity 
more quickly and cheaply than building an actual physical server farm. All services are billed 
based on usage, but each service measures usage in varying ways. As of 2017, AWS owns a 
dominant 34% of all cloud (IaaS, PaaS) while the next three competitors Microsoft, Google, and 
IBM have 11%, 8%, 6% respectively according to Synergy Group. 
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Amazon Web Services (AWS) Forecast 
Amazon Forecast is a fully managed service for time-series forecasting. By providing Amazon 
Forecast with historical time-series data, you can predict future points in the series. Time-series 
forecasting is useful in multiple domains, including retail, financial planning, supply chain, and 
healthcare. You can also use Amazon Forecast to forecast operational metrics for inventory 
management, and workforce and resource planning and management. 
 
For example, you can use Amazon Forecast to forecast the following: 

● Retail product demand, such as the demand for products selling on a website or at a 
particular store or location 

● Supply chain demand including the quantity of raw goods, services, or other inputs 
needed by manufacturing 

● Resource requirements, such as the number of call center agents, contract workers, IT 
staff, and energy needed to meet demand 

● Operational metrics, such as web traffic to servers, AWS usage, or IoT sensor usage 
● Business metrics, such as cash flow, sales, profits, and expenses on a per-region or 

per-service basis 
 
Amazon Forecast greatly simplifies building machine learning models. In addition to providing a 
set of predefined algorithms, Forecast provides an AutoML option for model training. AutoML 
automates complex machine learning tasks, such as algorithm selection, hyperparameter 
tuning, iterative modeling, and model assessment. Developers with no machine learning 
expertise can use the Amazon Forecast APIs, AWS Command Line Interface (AWS CLI), or 
Amazon Forecast console to import training data into one or more Amazon Forecast datasets, 
train predictors, and generate forecasts. 
 
Amazon Forecast provides the following additional advantages: 

● Accuracy ​– Amazon Forecast uses deep neural net and traditional statistical methods 
for forecasting. When you have many related time series, forecasts made using the 
Amazon Forecast deep learning algorithms, such as DeepAR+, tend to be more 
accurate than forecasts made with traditional methods, such as exponential smoothing. 
 

● Usability ​– You can use theAmazon Forecast console to look up and visualize forecasts 
for any time series at different granularities. You can also see metrics for the accuracy of 
your forecasts. 
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How Amazon Forecast Works 
When creating forecasting projects in Amazon Forecast, you work with the following resources: 

● Datasets and Dataset Groups ​– Datasets are collections of your input data. Dataset 
groups are collections of datasets that contain complimentary information. Forecast 
algorithms use your dataset groups to train custom forecasting models, called predictors. 

 
● Predictors ​– Predictors are custom models trained on your data. You can train a 

predictor by choosing a prebuilt algorithm,or by choosing the AutoML option to have 
Amazon Forecast pick the best algorithm for you. 
 

● Forecasts ​– You can generate forecasts for your time-series data, query them using the 
QueryForecast API, or visualize them in the console. 

 

 
 

Datasets and Dataset Groups 
 
Datasets contain the data used to train a predictor. You create one or more Amazon Forecast 
datasets and import your training data into them. A dataset group is a collection of 
complimentary datasets that detail a set of changing parameters over a series of time. After 
creating a dataset group, you use it to train a predictor. 
 
Each dataset group can have up to three datasets, one of each dataset type: target time series, 
related time series, and item metadata. 
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To create and manage Forecast datasets and dataset groups, you can use the Forecast 
console, AWS Command Line Interface (AWS CLI), or AWS SDK. 
 

Datasets 
To create and manage Forecast datasets, you can use the Forecast APIs, including the 
CreateDataset and DescribeDataset operations. 
 
 
When creating a dataset, you provide information, such as the following: 

● The frequency/interval at which you recorded your data. For example, you might 
aggregate and record retail item sales every week. In the our test, you use the average 
electricity used per hour. 
 

● The prediction format (the domain) and dataset type (within the domain). A dataset 
domain specifies which type of forecast you'd like to perform, while a dataset type helps 
you organize your training data into Forecast-friendly categories. 
 

● The dataset schema. A schema maps the column headers of your dataset. For instance, 
when monitoring demand, you might have collected hourly data on the sales of an item 
at multiple stores. In this case, your schema would define the order, from left to right, in 
which timestamp, location, and hourly sales appear in your training data file. Schemas 
also define each column's data type, such as string or integer. 

 
Each column in your Forecast dataset represents either a forecast dimension or feature. 
Forecast dimensions describe the aspects of your data that do not change over time, such a 
store or location. Forecast features include any parameters in your data that vary across time, 
such as price or promotion. Some dimensions, like timestamp or itemId, are required in target 
time series and related time series datasets. 
 

Dataset Domains and Dataset Types 
When you create a Forecast dataset, you choose a domain and a dataset type. Forecast 
provides domains for a number of use cases, such as forecasting retail demand or web traffic. 
You can also create a custom domain. For a complete list of Forecast domains, see Predefined 
Dataset Domains and Dataset Types. 
Within each domain, Forecast users can specify the following types of datasets: 

● Target time series dataset (required) – Use this dataset type when your training data is a 
time series and it includes the field that you want to generate a forecast for. This field is 
called the target field. 
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● Related time series dataset (optional) – Choose this dataset type when your training 
data is a time series, but it doesn't include the target field. For instance, if you're 
forecasting item demand, a related time series dataset might have price as a field, but 
not demand. 
 

● Item metadata dataset (optional) – Choose this dataset type when your training data isn't 
time-series data, but includes metadata information about the items in the target time 
series or related time series datasets. For instance, if you're forecasting item demand, 
an item metadata dataset might color or brand as dimensions. Forecast only considers 
the data provided by an item metadata dataset type when you use the ​DeepAR+ 
algorithm. 
 

Depending on the information in your training data and what you want to forecast, you might 
create more than one dataset. 
 
For example, suppose that you want to generate a forecast for the demand of retail items, such 
as shoes and socks. You might create the following datasets in the RETAIL domain: 
 

● Target time series dataset – Includes the historical time-series demand data for the retail 
items (item_id, timestamp, and the target field demand). Because it designates the target 
field that you want to forecast, you must have at least one target time series dataset in a 
dataset group. 
You can also add up to ten other dimensions to a target time series dataset. If you 
include only a target time series dataset in your dataset group, you can create forecasts 
at either the item level or the forecast dimension level of granularity only. 

●  
● Related time series dataset – Includes historical time-series data other than the target 

field, such as price or revenue. Because related time series data must be mappable to 
target time series data, each related time series dataset must contain the same 
identifying fields. In the RETAIL domain, these would be item_id and timestamp. 
A related time series dataset might contain data that refines the forecasts made off of 
your target time series dataset. For example, you might include price data in your related 
time series dataset on the future dates that you want to generate a forecast for. This 
way, Forecast can make predictions with an additional dimension of context. 

● Item metadata dataset – Includes metadata for the retail items. Examples of metadata 
include brand, category,color, and genre. 

●  
Example Dataset with a Forecast Dimension 
Continuing with the preceding example, imagine that you want to forecast the demand for shoes 
and socks based on a store's previous sales. In the following target time series dataset, store is 
a time-series forecast dimension, while demand is the target field. Socks are sold in two store 
locations (NYC and SFO), and shoes are sold only in ORD. 

99 

https://github.com/awsdocs/amazon-forecast-developer-guide/blob/master/doc_source/aws-forecast-recipe-deeparplus.md


The first three rows of this table contain the first available sales data for the NYC, SFO, and 
ORD stores. The last three rows contain the last recorded sales data for each store. The ... row 
represents all of the item sales data recorded between the first and last entries. 
 

timestamp item_id store demand 

2019-01-01 socks NYC 25 

2019-01-05 socks SFO 45 

2019-02-01 shoes ORD 10 

...    

2019-06-01 socks NYC 100 

2019-06-05 socks SFO 5 

2019-07-01 shoes ORD 50 

 

Dataset Schema 
Each dataset requires a schema, a user-provided JSON mapping of the fields in your training 
data. This is where you list both the required and optional dimensions and features that you 
want to include in your dataset. 
 
Some domains have optional dimensions that we recommend including. Optional dimensions 
are listed in the descriptions of each domain later in this guide. For an example, see RETAIL 
Domain. All optional dimensions take the data type string. 
 
A schema is required for every dataset. The following is the accompanying schema for the 
example target time series dataset above. 
 

{ 

     "attributes": [ 

        { 

           "AttributeName": "timestamp", 

           "AttributeType": "timestamp" 

        }, 

        { 

           "AttributeName": "item_id", 

           "AttributeType": "string" 
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        }, 

        { 

           "AttributeName": "store", 

           "AttributeType": "string" 

        }, 

        { 

           "AttributeName": "demand", 

           "AttributeType": "float" 

        } 

    ] 

} 

 
When you upload your training data to the dataset that uses this schema, Forecast assumes 
that the timestamp field is column 1, the item_id field is column 2, the store field is column 3, 
and the demand field, the target field, is column 4. 
 
For the related time series dataset type, all related features must have a float or integer attribute 
type. For the item metadata dataset type, all features must have a string attribute type. For more 
information. 
 
Note 
An attributeName and attributeType pair is required for every column in the dataset. Forecast 
reserves a number of names that can't be used as the name of a schema attribute. For the list 
of reserved names, 
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Time Boundaries 
The following table lists the time alignment boundaries Forecast uses when aggregating data. 

Frequenc
y 

Boundary 

Year First day of the year (January 1) 

Month First day of the month 

Week Most recent Monday 

Hour Last top of the hour (09:00:00, 
13:00:00) 

Minute Last top of the minute (45:00, 06:00) 

 
 
The following figure shows how Forecast transforms data to fit the weekly boundary: 
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Choosing an Amazon Forecast Algorithm 
Every Amazon Forecast predictor uses an algorithm to train a model, then uses the model to 
make a forecast using an input dataset group. To help you get started, Amazon Forecast 
provides the following predefined algorithms: 
 

● Autoregressive Integrated Moving Average (ARIMA) Algorithm 

arn:aws:forecast:::algorithm/ARIMA 

● DeepAR+ Algorithm 

arn:aws:forecast:::algorithm/Deep_AR_Plus 

● Exponential Smoothing (ETS) Algorithm 

arn:aws:forecast:::algorithm/ETS 

● Non-Parametric Time Series (NPTS) Algorithm 

arn:aws:forecast:::algorithm/NPTS 

● Prophet Algorithm 

arn:aws:forecast:::algorithm/Prophet 
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Autoregressive Integrated Moving Average (ARIMA) Algorithm 
Autoregressive Integrated Moving Average (ARIMA) is a commonly-used local statistical 
algorithm for time-series forecasting. ARIMA captures standard temporal structures (patterned 
organizations of time) in the input dataset. The Amazon Forecast ARIMA algorithm calls the 
Arima function in the Package 'forecast' of the Comprehensive R Archive Network (CRAN). 

How ARIMA Works 
The ARIMA algorithm is especially useful for datasets that can be mapped to stationary time 
series. The statistical properties of stationary time series, such as autocorrelations, are 
independent of time. Datasets with stationary time series usually contain a combination of signal 
and noise. The signal may exhibit a pattern of sinusoidal oscillation or have a seasonal 
component. ARIMA acts like a filter to separate the signal from the noise, and then extrapolates 
the signal in the future to make predictions. 

ARIMA Hyperparameters and Tuning 
Amazon Forecast converts the DataFrequency parameter specified in the CreateDataset 
operation to the frequency parameter of the R ts function using the following table: 

DataFrequency (string) R ts frequency (integer) 

Y 1 

M 12 

W 52 

D 7 

H 24 

30min 2 

15min 4 

10min 6 

5min 12 

1min 60 

For frequencies less than 24 or short time series, the hyperparameters are set using the 
auto.arima function of the Package 'forecast' of CRAN. For frequencies greater than or equal to 
24 and long time series, we use a Fourier series with K = 4,  
Supported data frequencies that aren't in the table default to a ts frequency of 1. 
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DeepAR+ Algorithm 
Amazon Forecast DeepAR+ is a supervised learning algorithm for forecasting scalar 
(one-dimensional) time series using recurrent neural networks (RNNs). Classical forecasting 
methods, such as autoregressive integrated moving average (ARIMA) or exponential smoothing 
(ETS), fit a single model to each individual time series, and then use that model to extrapolate 
the time series into the future. In many applications, however, you have many similar time series 
across a set of cross-sectional units. These time-series groupings demand different products, 
server loads, and requests for web pages. In this case, it can be beneficial to train a single 
model jointly over all of the time series. DeepAR+ takes this approach. When your dataset 
contains hundreds of feature time series, the DeepAR+ algorithm outperforms the standard 
ARIMA and ETS methods. You can also use the trained model for generating forecasts for new 
time series that are similar to the ones it has been trained on. 
 

How DeepAR+ Works 
During training, DeepAR+ uses a training dataset and an optional testing dataset. It uses the 
testing dataset to evaluate the trained model. In general, the training and testing datasets don't 
have to contain the same set of time series. You can use a model trained on a given training set 
to generate forecasts for the future of the time series in the training set, and for other time 
series. Both the training and the testing datasets consist of (preferably more than one) target 
time series. Optionally, they can be associated with a vector of feature time series and a vector 
of categorical features (for details, see DeepAR Input/Output Interface in the Amazon 
SageMaker Developer Guide). The following example shows how this works for an element of a 
training dataset indexed by i. The training dataset consists of a target time series, zi,t, and two 
associated feature time series, xi,1,t and xi,2,t. 
 

 

The target time series might contain missing values (denoted in the graphs by breaks in the time 
series). DeepAR+ supports only feature time series that are known in the future. This allows you 
to run counterfactual "what-if" scenarios. For example, "What happens if I change the price of a 
product in some way?" 
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Each target time series can also be associated with a number of categorical features. You can 
use these to encode that a time series belongs to certain groupings. Using categorical features 
allows the model to learn typical behavior for those groupings, which can increase accuracy. A 
model implements this by learning an embedding vector for each group that captures the 
common properties of all time series in the group. 
 
To facilitate learning time-dependent patterns, such as spikes during weekends, DeepAR+ 
automatically creates feature time series based on time-series granularity. For example, 
DeepAR+ creates two feature time series (day of the month and day of the year) at a weekly 
time-series frequency. It uses these derived feature time series along with the custom feature 
time series that you provide during training and inference. The following example shows two 
derived time-series features: ui,1,t represents the hour of the day, and ui,2,t the day of the 
week. 
 

 
 
DeepAR+ automatically includes these feature time series based on the data frequency and the 
size of training data. The following table lists the features that can be derived for each supported 
basic time frequency. 

 

Frequency of the Time 
Series 

Derived Features 

Minute minute-of-hour, hour-of-day, day-of-week, day-of-month, 
day-of-year 

Hour hour-of-day, day-of-week, day-of-month, day-of-year 

Day day-of-week, day-of-month, day-of-year 

Week day-of-month, week-of-year 

Month month-of-year 

A DeepAR+ model is trained by randomly sampling several training examples from each of the 
time series in the training dataset. Each training example consists of a pair of adjacent context 
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and prediction windows with fixed predefined lengths. The context_length hyperparameter 
controls how far in the past the network can see, and the prediction_length parameter controls 
how far in the future predictions can be made. During training, Amazon Forecast ignores 
elements in the training dataset with time series shorter than the specified prediction length. The 
following example shows five samples, with a context length (highlighted in green) of 12 hours 
and a prediction length (highlighted in blue) of 6 hours, drawn from element i. For the sake of 
brevity, we've excluded the feature time series xi,1,t and ui,2,t. 
 

 

To capture seasonality patterns, DeepAR+ also automatically feeds lagged (past period) values 
from the target time series. In our example with samples taken at an hourly frequency, for each 
time index t = T, the model exposes the zi,t values which occurred approximately one, two, and 
three days in the past (highlighted in pink). 
 

 
For inference, the trained model takes as input the target time series, which might or might not 
have been used during training, and forecasts a probability distribution for the next 
prediction_length values. Because DeepAR+ is trained on the entire dataset, the forecast takes 
into account learned patterns from similar time series. 
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Exponential Smoothing (ETS) Algorithm 
Exponential Smoothing (ETS) is a commonly-used local statistical algorithm for time-series 
forecasting. The Amazon Forecast ETS algorithm calls the ets function in the Package 'forecast' 
of the Comprehensive R Archive Network (CRAN). 
 

How ETS Works 
The ETS algorithm is especially useful for datasets with seasonality and other prior assumptions 
about the data. ETS computes a weighted average over all observations in the input time series 
dataset as its prediction. The weights are exponentially decreasing over time, rather than the 
constant weights in simple moving average methods. The weights are dependent on a constant 
parameter, which is known as the smoothing parameter. 
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Non-Parametric Time Series (NPTS) Algorithm 
The Amazon Forecast Non-Parametric Time Series (NPTS) algorithm is a scalable, probabilistic 
baseline forecaster. It predicts the future value distribution of a given time series by sampling 
from past observations. The predictions are bounded by the observed values. NPTS is 
especially useful when the time series is intermittent (or sparse, containing many 0s) and bursty. 
For example, forecasting demand for individual items where the time series has many low 
counts. Amazon Forecast provides variants of NPTS that differ in which of the past observations 
are sampled and how they are sampled. To use an NPTS variant, you choose a 
hyperparameter setting. 

How NPTS Works 
Similar to classical forecasting methods, such as exponential smoothing (ETS) and 
autoregressive integrated moving average (ARIMA), NPTS generates predictions for each time 
series individually. The time series in the dataset can have different lengths. The time points 
where the observations are available are called the training range and the time points where the 
prediction is desired are called the prediction range. 
 
Amazon Forecast NPTS forecasters have the following variants: NPTS, seasonal NPTS, 
climatological forecaster, and seasonal climatological forecaster. 
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Prophet Algorithm 
Prophet is a popular local Bayesian structural time series model. The Amazon Forecast Prophet 
algorithm uses the Prophet class of the Python implementation of Prophet. 
 

How Prophet Works 
Prophet is especially useful for datasets that: 

● Contain an extended time period (months or years) of detailed historical observations 
(hourly, daily, or weekly) 

● Have multiple strong seasonalities 
● Include previously known important, but irregular, events 
● Have missing data points or large outliers 
● Have non-linear growth trends that are approaching a limit 

 
Prophet is an additive regression model with a piecewise linear or logistic growth curve trend. It 
includes a yearly seasonal component modeled using Fourier series and a weekly seasonal 
component modeled using dummy variables. 
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Evaluating Predictor Accuracy 
To evaluate the accuracy of an algorithm for various forecasting scenarios and to tune the 
predictor, use predictor metrics. Amazon Forecast uses backtesting to produce metrics. 
 
Forecast automatically splits your input data into two datasets, training and test, as shown in the 
following figure. Forecast decides how to split the input data by using the 
BackTestWindowOffset parameter that you specify in the CreatePredictor operation, or if not 
specified, it uses the default value of the ForecastHorizon parameter. For more information, see 
EvaluationParameters. 

 

To evaluate the metrics in multiple backtest scenarios with different virtual forecast start dates, 

as shown in the following figure, use the NumberOfBacktestWindows parameter in the 

CreatePredictor operation. The default for the NumberOfBacktestWindows parameter is  

1. If you use the default, Forecast uses the simple splitting method shown in the preceding 

figure. 

111 



 

After training, Amazon Forecast calculates the root mean square error (RMSE) and weighted 
quantile losses to determine how well the model predicted the test data in each backtest window 
and the average value over all the backtest windows. These metrics measure the difference 
between the values predicted by the model and the actual values in the test dataset. To retrieve 
the metrics, you use the GetAccuracyMetrics operation. 

Root Mean Square Error 

RMSE is the square of the error term, which is the difference between the actual target value, 
yi,t, and the predicted (forecasted) value, ŷi,t, where i denotes the item index ranging from 1 to 
the total number of items, n, and t denotes the time index of the time series ranging from 1 to 
the final time in the evaluation period, T. 
 

 

The RMSE metric favors a model whose individual errors are of consistent magnitude because 
large variations in error increase the RMSE. Because of the squared error, a few poorly 
predicted values in an otherwise good forecast can increase the RMSE. 
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Prediction Quantiles and MAPE 
Prediction quantiles (intervals) express the uncertainty in the forecasts. By calculating prediction 
quantiles, the model shows how much uncertainty is associated with each forecast. Without 
accompanying prediction quantiles, point forecasts have limited value. 
 
Predicting forecasts at different quantiles is particularly useful when the costs of under and over 
predicting differ. Amazon Forecast provides probabilistic predictions at three distinct 
quantiles—10%, 50%, and 90%—and calculates the associated loss (error) at each quantile. 
The weighted quantile loss (wQuantileLoss) calculates how far off the forecast is from actual 
demand in either direction. This is calculated as a percentage of demand on average in each 
quantile. This metric helps capture the bias inherent in each quantile, which can't be captured by 
a calculation like MAPE (Mean Absolute Percentage Error), where the weights are equal. As 
with MAPE and RMSE, lower wQuantileLoss errors indicate better overall forecast accuracy. 
 
The weighted quantile loss is calculated as follows: 

 

q**i,t(τ) is the τ-quantile that the model predicts. τ is in the set {0.1, 0.2, ..., 0.9}. 
Amazon Forecast calculates the weighted P10, P50, and P90 quantile losses, where τ is in the 
set {0.1, 0.5, 0.9}, respectively. This covers the standard 80% confidence interval. For RMSE, 
Amazon Forecast uses the P50 forecast to represent the predicted value, for example, ŷi,t = 
qi,t(0.5). 
 
When the sum of the exact target over all items and all time is approximately zero in a given 
backtest window, the weighted quantile loss expression is undefined. In this case, Amazon 
Forecast outputs the unweighted quantile loss, which is the numerator in the above 
wQuantileLoss expression. 
 
wQuantileLoss[0.1]: For the P10 prediction, the true value is expected to be lower than the 
predicted value 10% of the time. 
 
For example, suppose that you're a retailer and you want to forecast product demand for winter 
gloves that sell well only during the fall and winter. If you don't have a lot of storage space and 
the cost of invested capital is high, or if the price of being overstocked on winter gloves 
concerns you, you might use the P10 quantile to order a relatively low number of winter gloves.  
 
You know that the P10 forecast overestimates the demand for your winter gloves only 10% of 
the time, so 90% of the time you'll be sold out of your winter gloves. 
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wQuantileLoss[0.5]: For the P50 prediction, the true value is expected to be lower than the 
predicted value 50% of the time. In most cases, the point forecasts that you generate internally 
or with other forecasting tools should match the P50 forecasts. If τ = 0.5, both weights are equal 
and the wQuantileLoss[0.5] reduces to the commonly used Mean Absolute Percentage Error 
(MAPE): 
 

 

where ​ŷi,t = qi,t(0.5)​.​Forecast uses the scaling factor of 2 in the wQuantileLoss formula to 

cancel the 0.5 factor to obtain the exact MAPE expression. 

Continuing the winter gloves example, if you know that there'll be a moderate amount of 
demand for the gloves and aren't concerned about being overstocked, you might choose to use 
the P50 quantile to order gloves. 
wQuantileLoss[0.9]: For the P90 prediction, the true value is expected to be lower than the 
predicted value 90% of the time. 
 
If you determine that being understocked on gloves will result in huge amounts of lost 
revenue—for example, the cost of not selling gloves is extremely high or the cost of invested 
capital is low—you might choose to use the P90 quantile to order gloves. 
 
The following figure of a forecast that has a Gaussian distribution, shows the quantiles that 
divide the forecast into four regions of equal probability. For information about the quantiles of a 
distribution. 
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Steps to use Amazon Forcast  
In this exercise, you use the Amazon Forecast console to import time-series data of electricity 
usage, create an Amazon Forecast predictor based on the input dataset, and make predictions 
of future electricity usage based on the input time interval. 
 
For this exercise, we use the individual household electric power consumption dataset. (Dua, D. 
and Karra Taniskidou, E. (2017). UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and 
Computer Science.) We aggregate the usage data hourly. 
 
Prerequisites 

● An AWS account. If you don't already have an AWS account 
● Training data in your Amazon Simple Storage Service (Amazon S3) bucket.  
● An AWS Identity and Access Management (IAM) role that allows Amazon Forecast to 

read and write to your S3 buckets.  
 

Step 1: Import Training Data 
To import time-series data into Amazon Forecast, create a dataset group, choose a domain for 
your dataset group, specify the details of your data, and point Amazon Forecast to the S3 
location of your data. You use a time series of historical electricity usage as an example for the 
target time series data. 
 
Note 
This exercise assumes that you haven't created any dataset groups. If you previously created a 
dataset group, what you see will vary slightly from the following screenshots and instructions. 
 
 
To import time-series data for forecasting 

1. Sign in to the AWS Management Console and open the Amazon Forecast console at 
https://console.aws.amazon.com/forecast/​. 

2. On the Amazon Forecast home page, choose Create dataset group. 
3. On the Create dataset group page, for Dataset group details, provide the following 

information: 
○ Dataset group name – Enter a name for your dataset group. 
○ Forecasting domain – From the drop-down menu, choose Custom. 
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○ similar to the following: 

 
4. Choose Next. 
5. On the Create target time series dataset page, for Dataset details, provide the following 

information: 
○ Dataset name – Enter a name for your dataset. 
○ Frequency of your data – Keep the default value of 1, and choose hour from the 

drop-down menu. This setting must be consistent with the input time series data. 
The time interval in the sample electricity-usage data is an hour. 

○ Data schema – Update the schema to match the columns of the time-series data 
in data types and order. For the electricity usage input data, the columns 
correspond to: a timestamp, the electricity usage at the specified time 
(target_value), and the ID of the customer charged for the electricity usage 
(string), in that order. 
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6. Your screen should look similar to the following: 

 
7. Choose Next. 
8. On the Import target time series data page, for Dataset import job details, provide the 

following information: 
○ Dataset import job name – Enter a name for your dataset. 
○ Timestamp format – Leave the default (yyyy-MM-dd HH:mm:ss). The format must 

be consistent with the input time series data. 
○ IAM role – Keep the default Enter a custom IAM role ARN. 

Alternatively, you can have Amazon Forecast create the required IAM role for 
you by choosing Create a new role from the drop-down menu and following the 
on-screen instructions. 

○ Custom IAM role ARN – Enter the Amazon Resource Name (ARN) of the IAM 
role that you created in Create an IAM Role for Amazon Forecast (IAM Console). 
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○ Data location – Use the following format to enter the location of your .csv file on 
Amazon S3: 
s3:////<filename.csv> 

9. Your screen should look similar to the following: 

 
10.Choose Start import. 
11.The dataset group's Dashboard page is displayed. Your screen should look similar to the 

following: 
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Under Target time series data, you will see the status of the import job. Wait for Amazon 
Forecast to finish importing your time-series data. The process can take several minutes 
or longer. When your dataset has been imported, the status transitions to Active. 
Additionally, the banner at the top of the dashboard, changes to display the following 
message: 

 
Now that your target time series dataset has been imported, you can train a predictor. 
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Step 2: Train a Predictor 
To create a predictor, which is a trained model, choose an algorithm and the number (length 
times frequency) of predictions to make. You can choose a particular algorithm, or you can 
choose AutoML to have Amazon Forecast process your data and choose an algorithm to best 
suit your dataset group. For information about algorithms, see Choosing an Amazon Forecast 
Algorithm. 
To train a predictor 

1. After your target time series dataset has finished importing, your dataset group's 
Dashboard should look similar to the following: 

 
Under Train a predictor, choose Start. The Train predictor page is displayed. Note 
The Status of the Target time series data must be Active, which signifies that the import 
successfully finished, before you can train the predictor.  
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2. On the Train predictor page, for Predictor details, provide the following information: 

○ Predictor name – Enter a name for your predictor. 
○ Forecast horizon – Choose how far into the future to make predictions. This 

number multiplied by the data entry frequency (hourly) that you specified in Step 
1: Import the Training Data determines how far into the future to make 
predictions. For this exercise, set the number to 36, to provide predictions for 36 
hours. 

○ Forecast frequency – Keep the default value of 1. From the drop-down menu, 
choose hour. This setting must be consistent with the input time series data. The 
time interval in the sample electricity-usage data is an hour. 

○ Algorithm selection – Keep the default value Manual. From the drop-down menu, 
choose the ETS algorithm The remaining settings are optional, so leave the 
default values. Your screen should look similar to the following: 
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3. Choose Train predictor. Your dataset group's Dashboard page is displayed. Your screen 
should look similar to the following: 

 
Under Predictor training, you will see the training status. Wait for Amazon Forecast to 
finish training the predictor. The process can take several minutes or longer. When your 
predictor has been trained, the status transitions to Active. Additionally, the banner at the 
top of the dashboard changes to display the following message: 

 
Now that your predictor has been trained, you can create a forecast. 
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Step 3: Create a Forecast 
To make predictions (inferences), you use a predictor to create a forecast. A forecast is a group 
of predictions, one for every item in the target dataset. To retrieve the prediction for a single 
item, you query the forecast. To retrieve the complete forecast, you create an export job. 
To get and view your forecast 
 

1. After your predictor has finished training, your dataset group's Dashboard should look 
similar to the following: 

 
Under Forecast generation, choose Start. The Create a forecast page is displayed. Note 
The Status of Predictor training must be Active before you can generate a forecast. 

2. On the Create a forecast page, for Forecast details, provide the following information: 
○ Forecast name – Enter a name for your forecast. 
○ Predictor – From the drop-down menu, choose the predictor that you created in 

Step 2: Train a Predictor. 
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3. The remaining setting is optional, so leave the default value. Your screen should look 
similar to the following: 

 
4. Choose Create a forecast. The dataset group's Dashboard page is displayed. Your 

screen should look similar to the following: 

 
Under Forecast generation, you should see the status of forecast generation. Wait for 
Amazon Forecast to finish creating the forecast. The process can take several minutes 
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or longer. When your forecast has been created, the progress transitions to Active. 
Additionally, the banner at the top of the dashboard changes to display the following 
message: 

 
Now that your forecast has been created, you can query or export the forecast. 
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Step 4: Retrieve a Forecast 
After the forecast has been created, you can query for a single item or export the complete 
forecast. 
To query for a single item 

1. If the dashboard is not displayed, in the navigation pane, under your dataset group, 
choose Dashboard. 

2. In the Dashboard, under Generate forecasts, choose Lookup forecast. The Forecast 
lookup page is displayed. 

3. On the Forecast lookup page, for Forecast details, provide the following information. 
○ Forecast – From the drop-down menu, choose the forecast that you created in 

Step 3: Create a Forecast. 
○ Start date – Enter 2015/01/01. Keep the default time of 00:00:00. 
○ End date – Enter 2015/01/02. Change the time to 12:00:00. 

The date range of 36 hours corresponds to the Forecast horizon that you 
specified in Step 2: Train a Predictor. 

○ Choose which keys/filters – Choose Add forecast key. 
○ Forecast key – From the drop-down menu, choose item_id. 
○ Value – Enter a value from the item_id column of the input time series of the 

electricity usage data. An item_id (for example, client_21) identifies a particular 
client who is included in the dataset. 
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4. Your screen should look similar to the following: 

 
5. Choose Get Forecast. When the forecast is displayed, review the forecast for electricity 

usage demand by client_21. 
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The forecast should look similar to the following: 

 
To export the complete forecast 

1. In the navigation pane, under your dataset group, choose Forecasts. 
2. Choose the radio button next to the forecast that you created in Step 3: Create a 

Forecast. 
3. Choose Create forecast export. The Create forecast export page is displayed. 
4. On the Create forecast export page, for Export details, provide the following information. 

○ Export name – Enter a name for your forecast export job. 
○ Generated forecast – From the drop-down menu, choose the forecast that you 

created in Step 3: Create a Forecast. 
○ IAM role – Keep the default Enter a custom IAM role ARN. 

Alternatively, you can have Amazon Forecast create the required IAM role for 
you by choosing Create a new role from the drop-down menu and following the 
on-screen instructions. 

○ Custom IAM role ARN – Enter the Amazon Resource Name (ARN) of the IAM 
role that you created in Create an IAM Role for Amazon Forecast (IAM Console). 

○ S3 forecast export location – Use the following format to enter the location of 
your Amazon Simple Storage Service (Amazon S3) bucket or folder in the 
bucket: 
s3://// 
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5. Your screen should look similar to the following: 

 
6. Choose Create forecast export. The my_forecast page is displayed. 

Your screen should look similar to the following: 

 
You should see the status progress. Wait for Amazon Forecast to finish exporting the 
forecast. The process can take several minutes or longer. When your forecast has been 
exported, the status transitions to Active and you can find the forecast files in your S3 
bucket. 

130 



 
 
 
 

Reference 
● https://en.wikipedia.org/wiki/Python_(programming_language)  
● https://en.wikipedia.org/wiki/R_(programming_language) 
● https://en.wikipedia.org/wiki/JavaScript 
● https://en.wikipedia.org/wiki/HTML 
● https://en.wikipedia.org/wiki/Cascading_Style_Sheets 
● https://en.wikipedia.org/wiki/PHP 
● https://en.wikipedia.org/wiki/Apache_HTTP_Server 
● https://en.wikipedia.org/wiki/Laravel 
● https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework) 
● https://en.wikipedia.org/wiki/JQuery 
● https://tobiasahlin.com/blog/introduction-to-chartjs/ 
● https://en.wikipedia.org/wiki/Project_Jupyter 
● https://en.wikipedia.org/wiki/Agile_software_development 
● https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller 
● https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00

743 
● https://improvado.io/blog/what-is-data-aggregation 
● https://productsup.io/wp-content/uploads/2018/09/content-aggregation.png 
● https://en.wikipedia.org/wiki/Time_series 
● https://lh6.googleusercontent.com/3ilNt7AbjM0ahQd10tFn41s8ux_9rRIiDtVOUSUCKPqc

vwc-5RZfKhA7SVD6RRlXVc2eMjncTtYliL1wIXHy1LNBN0HsDM4kSCHjbDXvvbgl7inygK
EazHrf68gsEx-2eSzmqLXT 

● Python for Data Analysis, 2nd Edition book - 
https://www.oreilly.com/library/view/python-for-data/9781491957653 

● https://en.wikipedia.org/wiki/Amazon_Web_Services 
● Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd 

edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on <current date> - 
https://otexts.com/fpp2/ 

● Amazon Forecast Documentation - ​https://docs.aws.amazon.com/forecast/ 

131 

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Laravel
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://en.wikipedia.org/wiki/JQuery
https://tobiasahlin.com/blog/introduction-to-chartjs/
https://en.wikipedia.org/wiki/Project_Jupyter
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00743
https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00743
https://improvado.io/blog/what-is-data-aggregation
https://productsup.io/wp-content/uploads/2018/09/content-aggregation.png
https://en.wikipedia.org/wiki/Time_series
https://lh6.googleusercontent.com/3ilNt7AbjM0ahQd10tFn41s8ux_9rRIiDtVOUSUCKPqcvwc-5RZfKhA7SVD6RRlXVc2eMjncTtYliL1wIXHy1LNBN0HsDM4kSCHjbDXvvbgl7inygKEazHrf68gsEx-2eSzmqLXT
https://lh6.googleusercontent.com/3ilNt7AbjM0ahQd10tFn41s8ux_9rRIiDtVOUSUCKPqcvwc-5RZfKhA7SVD6RRlXVc2eMjncTtYliL1wIXHy1LNBN0HsDM4kSCHjbDXvvbgl7inygKEazHrf68gsEx-2eSzmqLXT
https://lh6.googleusercontent.com/3ilNt7AbjM0ahQd10tFn41s8ux_9rRIiDtVOUSUCKPqcvwc-5RZfKhA7SVD6RRlXVc2eMjncTtYliL1wIXHy1LNBN0HsDM4kSCHjbDXvvbgl7inygKEazHrf68gsEx-2eSzmqLXT
https://www.oreilly.com/library/view/python-for-data/9781491957653
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://otexts.com/fpp2/
https://docs.aws.amazon.com/forecast/

